mono-tops

Jose E. Garcia – IFIC/CSIC/UV

Monotop final state

- "Monotop": one top-quark + missing (transverse) energy
- In the Standard Model: GIM- and CKM-suppressed!

At LHC energies, no top in protons, monotop final state is a clear BSM signature

Mono-top Theoretical Models

- Leptoquark to top+neutrino :
 - SU(5)GUTs
- Top-squark to top+long-lived neutralino :
 - RPV SUSY <u>Eur.Phys.J.C75(2015)7</u>
- Hylogenesis models :
 - dark matter, baryogenesis <u>Phys.Rev.D91(2015)035005
 </u>
- Majorana neutrinos :
 - dark matter, neutrino mass Phys.Rev.D90(2014)095018
- Neutralinos + top :
 - RPC SUSY
- Neutral boson X with invisible decay :
 - Z0, Z-mediated FCNC, type-III 2HDM + scalar DM
 - Phys.Rev. D 89 (2014) 1, 014016
- "Top-flavoured" dark matter :
 - dark matter, Phys.Rev. D 88 (2013) 075012

Mono-top Effective Model

- Effective model proposed by Andrea, Fuks, Maltoni Phys. Rev. D 84 (2011) 074025
 - general Lagrangian for monotop where Missing Energy = new particle with invisible signature
- Two kind of models
 - resonant: spin 0/1 boson produced on-shell, decays in to top + invisible fermion
 - non-resonant: invisible spin 0/1 boson produced in association with a top

Mono-top Model for RUN - II

Resonant Non-Resonant vmet vmet t vmet vmet t vmet vme

$$\mathcal{L} = \left[\varphi \bar{d}^c \left[a_{SR}^q + b_{SR}^q \gamma_5 \right] d + \varphi \bar{u} \left[a_{SR}^{1/2} + b_{SR}^{1/2} \gamma_5 \right] \chi + \text{h.c.} \right]$$

$$a_{SR}^q = b_{SR}^q = \frac{1}{2} \lambda_s \qquad a_{SR}^{1/2} = b_{SR}^{1/2} = \frac{1}{2} y_s^*$$

$$\mathcal{L} = \left[V_{\mu} \bar{u} \gamma^{\mu} \left[a_{FC}^1 + b_{FC}^1 \gamma_5 \right] u + \mathrm{h.c.} \right] \qquad a_{FC}^1 = b_{FC}^1 = \frac{1}{2} a_R$$

^{*} Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum", arXiv:1507.00966.

Mono-top in RUN - I

Preselection :

- single lepton trigger
- 1 isolated e/ μ , 1 central jet b-tagged
- Missing E_T > 35 GeV,
- m_T(W) + missing E_T > 60 GeV
- "Cut-and-count", 1 signal region for each signal
 - m_T(W) and | Δ Φ (I,b) |
 - Optimised for best limits

Backgrounds:

- Main: ttbar, W+jets (MC)
- Others: single top, Z +jets, Diboson (MC), multijets (data)

Eur. Phys. J. C 75 (2015) 79

Mono-top in RUN – I

Resonant

Limits on the effective coupling a_{RES}

$$a_{RES}$$
 = 0.15 excluded for $m(S)$ = 500 GeV and $m(f_{MFT})$ = 0-100 GeV

Non-Resonant

Limits on the effective coupling a_{NON-RES}

$$a_{NON-RES} = 0.2$$

excluded for V_{MET}
=0-657 GeV

Eur. Phys. J. C 75 (2015) 79

Mono-top Searches in RUN-II

- Combined group leptonic and hadronic decay of the top working together for the measurement. IFIC is performing the leptonic analysis:
 - Analysis based on 8 TeV mono-top search with additional optimizations to improve the limit.
 - Added new interpretation and region looking for Vector-like Top (VLT) with decay to top and invisible Z.