Dark matter search at LHC in the Mono Higgs channel with the CMS detector

Nicolò Trevisani Alicia Calderón

IFCA - CSIC - UC

May 8, 2017

Searching Dark Matter at LHC

- Dark Matter particle nature is unknown and cannot be explained within Standard Model
- At a hadron collider have to assume interaction between Standard Model and Dark Matter candidate particles
- Main candidate: Weakly Interacting Massive Particle
- Final state with two Dark Matter particles and SM particle(s)
 - Missing Transverse Momentum $(\mathbf{p}_T^{miss}) + \mathbf{X}$ signatures
 - In this case X is a Higgs boson

Mono-Higgs Physics Models

- The benchmark models inspected and their parameters have been chosen following LHC DM Working Group recommendations
 - Z'-2HDM
 - Z'_R
- Two Higgs decay channels already public using 2.3 fb⁻¹ of 2015 Data interpreted in the Z'-2HDM benchmark [arXiv:1703.05236]
 - h \rightarrow bb: higher branching ratio, lower m_h resolution
 - h $\rightarrow \gamma \gamma$: lower branching ratio, higher m_h resolution
- At **IFCA** we are studying $h \rightarrow WW$ final state
 - Following the tradition of SM WW and SM H → WW analyses

$h \rightarrow bb$ Analysis Strategy

Two categories to enhance the sensitivity of the analysis

Resolved (low Higgs boost)	Merged (high Higgs boost)
Two b-tagged AK4 jets with $p_T > 30 \text{ GeV}$	One AK8 jet with $p_T > 200$ GeV with two b-tagged sub-jets
$p_T^{miss} > 170 \text{ GeV}$	$p_T^{miss} > 200 \text{ GeV}$

- Multi-jet rejection
 - $\Delta\phi(\mathsf{AK4}_{jet}, \vec{p}_T^{miss}) > 0.4$
 - $\Delta \phi(\vec{p}_T^{miss}, \vec{p}_{T,trk}^{miss}) < 0.7$
- Semi-leptonic top and W + jet rejection
 - Lepton (e, μ , τ) veto
 - No additional b-jets
 - No more than 1 additional AK4 jets

Main backgrounds (Z $\rightarrow \nu\nu$ + jets, Top, W + jets) normalized in control regions

$h \rightarrow bb$ Signal Extraction

The signal is extracted with a simultaneous fit of the signal region and the control regions

- 100 GeV $< m_h < 150$ GeV
- Fit is performed on a three-bin p_T^{miss} histogram

$\mathsf{h}{ o}\gamma\gamma$ Analysis Strategy

- Reduce jets faking photons contribution
 - Low $\frac{E_{HCAL}}{E_{FCAL}}$
 - Isolation requirements applied
- Avoid $m_{\gamma\gamma}$ spectrum distortion

-
$$\frac{p_T^{\gamma 1}}{m_{\gamma \gamma}} > 0.5$$
 and $\frac{p_T^{\gamma 2}}{m_{\gamma \gamma}} > 0.25$

- Reject Mis-measured p_T^{miss} events
 - $|\Delta\phi(\gamma\gamma,\vec{p}_T^{miss})| > 2.1$
 - $|\Delta\phi({\rm jet},\vec{p}_T^{miss})|>0.5$ for every jet with p $_T>50$ GeV
- Reduce EW background
 - Veto events with muons or more than 1 electron
- Select events with a Higgs boson recoling against \bar{p}_T^{miss}
 - $p_{\tau}^{miss} > 105 \text{ GeV}$
 - $p_T^{\gamma\gamma} > 90 \text{ GeV}$

$h \rightarrow \gamma \gamma$ Signal Extraction

The signal is extracted by counting the events in the Singal Region

- SM Higgs contamination is taken from simulations
- Non-resonant background contribution in SR is estimated from Data
 - Transfer factor $\alpha = N_C / N_B = N_D / N_A$ is **extracted in low p**^{miss} region
 - And then **applied in high p**^{miss}_T region: $N_D = \alpha \cdot N_A$

Mono-Higgs \rightarrow WW Analysis

The h \rightarrow WW fully leptonic final state is now under investigation at IFCA

- Very clean final state
- The presence of the neutrinos spoils the p_T^{miss} and the m_H distributions

Analysis strategy

- Select two well reconstucted and energetic leptons (e μ and ee/ $\mu\mu$ final states)
- Exploit a multivariate analysis to enhance signal vs background separation
 - \mathbf{m}_{T}^{H} , $\Delta \phi(\ell \ell)$...
 - Take all systematic uncertainties under control!
- Estimate the main backgrounds in control regions
 - WW: $m_{\ell\ell} > 100 \text{ GeV}$
 - Top: at least 1 b-tagged jet
 - Drell-Yan: $|\mathsf{m}_{\ell\ell}$ $\mathsf{m}_{Z}| < 15~\text{GeV}$

Combination of the public results

- Result interpreted in terms of upper limits on the DM production cross section via Z'-2HDM model since no excess wrt SM predictions observed
- Mass scan
 - $m_{Z'} = (600 \text{ GeV} 2500 \text{ GeV})$
 - $m_{A0} = (300 \text{ GeV} 800 \text{ GeV})$
- Two Z'-A₀-h coupling constant g_{Z'} values studied

$h{ ightarrow}bb$ and $h{ ightarrow}\gamma\gamma$ for $m_{A0}=$ 300 GeV

Full Combination Results

Conclusions

CMS has already published results in the mono-Higgs channel

- The 2015 dataset has been exploited
 - 2.3 fb⁻¹ at $\sqrt{s} = 13$ TeV
 - h ightarrow bb and h $ightarrow \gamma \gamma$ final states
 - The two analyses have been combined to enhance the exclusion limit
- Next steps
 - Exploit the full 2016 luminosity
 - Extend the search to all main Higgs decay modes (in particular WW)
 - Include all the final states in the combination