ATLAS Higgs Physics (Selected topics)

Outline

- A set of Higgs physics results with ATLAS has been selected according to the organizers indications.
- During Run 1, ATLAS-Spain covered all the "big 5" decay modes and some BSM searches. I'm most familiar with H \rightarrow WW(IVIV), H $\rightarrow \gamma \gamma$, H $\rightarrow \tau \tau$ and $H(125) \rightarrow \tau I$.

Current Run 2 Higgs activities: more focus on BSM searches and properties

measurements.

• Run 2 H(125) Measurements Results:

• $H \rightarrow \gamma \gamma$

First 13 TeV Higgs results

- H → ττ
- Run 2 BSM Searches:
 - LFV H(125) $\rightarrow \tau I$
 - $Z',A/H \rightarrow \tau\tau$

X/H → hh → bbγγ

First 13 TeV Higgs results

Only possible to present a short summary of all these analyses in this talk.

$H \rightarrow \gamma \gamma$

$ATLAS H \rightarrow \gamma \gamma$

 Measurement of the Higgs cross-section @ 13 TeV with ATLAS data (2015 data) and subsequent measurement of couplings and differential crosssections with 2015+2016 data.

ATLAS-CONF-2016-067

- H $\rightarrow \gamma \gamma$ is a particularly interesting final state given the good mass resolution and fair statistical power.
- Fiducial and differential cross sections are measured in a variety of phase space regions sensitive to inclusive Higgs boson production and individual production modes.
- Analysis exploits fine separation in categories to enhance the measurement of the sub-dominant production modes.
- Measurement is extracted from the unbinned maximum likelihood fit is performed on the m_{γ} spectrum in each fiducial region or bin of a differential distribution.

$ATLAS H \rightarrow \gamma \gamma$

- Signal strength measured in all the analysis categories and x-section measured in 3 fiducial regions: baseline, VBF-enhanced and single lepton.
- Differential x-section measured for 7 kinematic variables sensitive to pQCD predictions, Higgs production modes and spin-CP.
 Variables include p_T^{γγ}, Njets and Δφ_{ii}.
- x-section results limited by statistical uncertainties.
 Theoretical uncertainties, although non dominant, are not negligible.
- Measurements of the differential and fiducial crosssection in the H → ηγ final state starts to be comparable to Run 1.

ATLAS-CONF-2016-067

Source	Uncertainty on fiducial cross section (%)		
	Baseline	VBF-enhanced	single-lepton
Fit (stat.)	34.5	35.0	52.9
Fit (syst.)	9.0	11.1	9.3
Photon efficiency	4.4	4.4	4.4
Jet energy scale/resolution	-	9.4	-
Lepton selection	_	-	0.8
Pileup	1.1	2.0	1.4
Theoretical modelling	4.3	9.4	8.4
Luminosity	2.9	2.9	2.9

$\mathcal{H} \to \tau \tau$

$H \rightarrow \tau \tau decays to leptons$

- H $\rightarrow \tau\tau$ is important for the determination of the Higgs Yukawa couplings to fermions and measure the VBF production mode.
- ATLAS obtained Evidence of this decay
 (4.5 σ) and recently Observation was
 achieved combining with CMS.
- It is still the only leptonic channel accessible for few more years and it is the fermionic channel with the best sensitivity.
- H → ττ final state has also strong sensitivity to VBF production mode and Higgs CP.

Production process	Observed Significance(ơ)	Expected Significance (σ)
VBF	5.4	4.7
WH	2.4	2.7
ZH	2.3	2.9
VH	3.5	4.2
ttH	4.4	2.0
Decay channel		
H→ττ	5.5	5.0
H→bb	2.6	3.7

BSM Higgs

$LFVH \rightarrow \tau\mu$ and τe

- The search for LFV decays of the Higgs boson are an interesting door to New Physics, H → τμ, τe.
- ATLAS searches for LFV H $\rightarrow \tau l$ decays are in part adapted from the H $\rightarrow \tau \tau$ analyses.
- A data-driven method is used for $[\tau_{\parallel}]^{\frac{1}{2}}$ $[\tau_{\parallel}]$ channel, relying on symmetry of $[\tau_{\parallel}]^{\frac{1}{2}}$ the SM bkg processes between $e\mu$ and μe final states.
- Run 1 results:
 - BR(H → τe) < 1.04%, 95% CL (exp. 1.21%)
 - BR(H $\rightarrow \tau \mu$) < 1.43%, 95% CL (exp. 1.01%)
- Excellent synergy with H → ττ measurement.

$BSMA/H \& Z' \rightarrow \tau\tau$

- Focus on early Run 2 searches for Heavy bosons contribution, H/A → ττ and Z' → ττ.
- This final state is very sensitive to a large range of MSSM parameters space and is playing a key role for Run 2 MSSM searches.
- Run 2 analysis focuses on final states with at least one τ_{had} , because they have better sensitivity at high mass.
- Category with b-jets improves sensitivity for MSSM scenarios with large tanβ.
- Main backgrounds are Multi-jet, top-quark production and Z → ττ processes.

$\overline{BSM}A/H \& Z' \rightarrow \tau\tau$

- Search updated to 13.3 fb⁻¹ in summer 2016.
- In the τ_{lep} τ_{had} final state, a category of events selected by $E_{\scriptscriptstyle T}^{\; miss}$ trigger is used to recover part of the events not selected by lepton triggers.
- Result obtained from a template fit of the m_T^{tot} distribution, a mass observable related to the transverse mass to achieve maximal separation of signal and backgrounds with fake taus.
- Result is interpreted in modeldependent and independent ways, with and without b-jets in the final states. It is interpreted (with small changes) also in terms of Z' → ττ search.

ATLAS-CONF-2016-085

$$m_{\rm T}^{\rm tot} = \sqrt{m_T^2(E_{\rm T}^{\rm miss},\tau_1) + m_{\rm T}^2(E_{\rm T}^{\rm miss},\tau_2) + m_{\rm T}^2(\tau_1,\tau_2)},$$

$ATLAS hh \rightarrow bb\gamma\gamma$

- Small excess observed in this final state in Run 1.
- First bbyy search with 13 TeV data to seek confirmation of the excess performed with 3.2 fb⁻¹.

bbyy final state:

- With current luminosity searching for enhancement above SM:
- NP search for heavy resonance decaying to hh
- NP search for non resonant double Higgs production.

 m_{bbyy}

ATLAS-CONF-2016-004

 $X \rightarrow hh \rightarrow bb\gamma\gamma$

 m_{yy}

- The search for non-resonant production is performed from the fit of the 2 b-tag region. The 0 b-tag region sidebands is used to determine the background shape.
- The search for a resonant di-Higgs production is a counting measurement requiring selection on the m_w and m_{bbw} distributions.
- A m_w sidebands CR is used for background estimation. m_w and m_{bbw} factors are required to extrapolate the background from the sideband to the SR.

$ATLAS hh \rightarrow bb\gamma$

ATLAS-CONF-2016-004

Exp. limit ±2σ_{exp}

380

m_x [GeV]

- An upper limit of 3.9 pb on § the cross-section for nonresonant production is extracted at the 95% CL (5.4 pb expected).
- The result is completely dominated by statistics.
- Good sensitivity to new physics thanks to possibility to fully reconstruct the mass of the two higgs bosons with good resolution.

Data - Fit

 Synergy with H → γγ measurements.

Process	0-tag	2-tag
Continuum background SM single-Higgs SM di-Higgs	1.8 ± 1.5	$\begin{array}{c} 1.63 \pm 0.30 \\ 0.14 \pm 0.05 \\ 0.027 \pm 0.006 \end{array}$
Observed	27	0

Summary

- LHC restarted delivering p-p collisions in 2015 with unprecedented center of mass energy:
 - Opportunity for BSM searches in the Higgs sector.
 - Measurement of productions and decays suppressed in the SM.
 - Better measurement of H(125) properties.
- Outstanding performance from the LHC team and experiments is allowing to deliver an impressive amount of results on the Higgs sector during Run 2.
- Participating in several BSM Searches and Higgs boson properties measurements have been updated already with Run 2 data.
 Some results in complex final states have yet to be updated with Run 2 statistics.
- Many searches and measurements are still statistically limited: increase of luminosity expected by the end of Run 2 allows to further improve their sensitivity.

Bonus Slides

LHC Luminosity and interactions per bunch crossing

Run-1 Results based on 2011+2012 data

Luminosity is measured with forward/tracking detectors and calibrated with beam separation scans CMS Integrated Luminosity, pp

- Pileup already at the design level and above during 2012, thanks to excellent performance of the LHC.
- Peak luminosity (cm⁻² s⁻¹): 7.7x10³³ (2012), 5.2x10³³ (2015).

~29 fb⁻¹ of data delivered during Run land about 4 fb⁻¹ during 2015 and up to 25 fb⁻¹ expected in 2016.

ATLAS Detector

	ATLAS
Magnetic field	2 T solenoid + toroid: 0.5 T (barrel), 1 T (endcap)
Tracker	Silicon pixels and strips + transition radiation tracker $\sigma/p_T \approx 5 \cdot 10^{-4} p_T + 0.01$
EM calorimeter	Liquid argon + Pb absorbers σ/E ≈ 10%/√E + 0.007
Hadronic calorimeter	Fe + scintillator / Cu+LAr (10λ) σ/E ≈ 50%/√E + 0.03 GeV
Muon	σ/p _T ≈ 2% @ 50GeV to 10% @ 1TeV (Inner Tracker + muon system)
Trigger	L1 + HLT (L2+EF)

24 m

ATLAS Collaboration
38 Countries
175 Institutions
3000 Scientific Authors total
(~2000 with a PhD)

DAQ and Trigger

Both experiments have improved their DAQ and trigger systems for Run-2. Current DAQ Performance

- >= $100 \, \text{kHz}$ at L1
- >= 1 kHz HLT output

Data taking & Quality efficiency

- ATLAS (CMS) data-taking efficiency for 2012 run was 93.1% (93.5%)
- •The ATLAS (CMS) good quality data was 95.8% (91%) of the recorded data
 - High DQ also thanks to efficiency recovery from large data reprocessing

Overall ~88% (85%) of delivered luminosity is used for ATLAS and CMS physics analysis.

Computing and Simulation

The fast duty cycle of the LHC analyses is possible thanks to the TierO and GRID resources

Local and DAO disk

- Just in 2012, both CMS and ATLAS experiments have produced 3-4 billions of MC events on the GRID and processed ~3 billions of data events at TierO.
- On a single machine, it would require more than 15 thousands years (without considering user and group analyses, calibrations, reprocessings, ...).
- •GRID is a crucial asset of the LHC experiments to provide physics results in a timely manner.

Higgs Production Modes at LHC

Total x-section:

17 pb (17000 evts/fb⁻¹) @7 TeV 22 pb (22000 evts/fb⁻¹) @8 TeV 55 pb (55000 evts/fb⁻¹) @13TeV

Constraints on BSM couplings

- Only σ x BRs can be measured, without further assumptions on the width of the Higgs boson cannot be measured: assume $k_{V} \le 1$ (as in 2HDM). H \rightarrow Dark Matter would contribute to BR_{RSM} $\sigma_{i} \cdot BR^{f} = \frac{\sigma_{i}(\vec{k})}{2}$
- k_t dominated by ttH process
- BR_{BSM} < 0.34 at 95% C.L. (assuming $k_V \le 1$)

 $\sigma_i \cdot BR^f = \frac{\sigma_i(\vec{\kappa}) \cdot \Gamma^f(\vec{\kappa})}{\Gamma_H},$ $\Gamma_H = \frac{\kappa_H^2 \cdot \Gamma_H^{SM}}{1 - BR_{BSM}},$