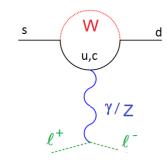
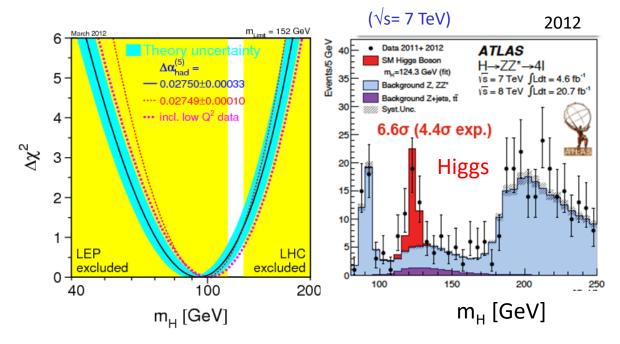

B decay anomalies @ LHCb

RED LHC, IFT, May 2017
Arantza Oyanguren

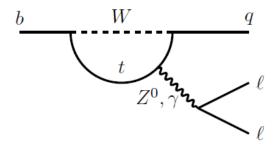



Indirect searches of New Physics

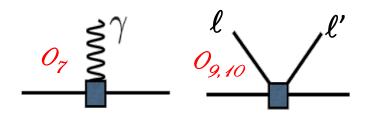
Off-Shell particles: Evidence in quantum effects (loops)

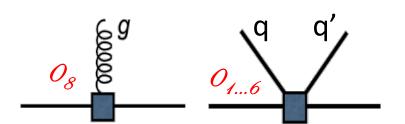
→ Precision Physics (BR's, asymmetries, angular distributions...)

Indirect observations of **New Physics** is the portal to infer properties of heavy particles before experiments have sufficient energy to produce them.



→ Complementarity of indirect and direct searches is crucial!


Operator Product Expansion


• Weak decay processes:

$$\mathcal{H}_{ ext{eff}} = rac{G_F}{\sqrt{2}} \; \sum_i \; V_{ ext{CKM}}^{\;\;i} \; (rac{C_i \mathcal{O}_i}{C_i} + rac{C_i' \mathcal{O}_i'}{i})$$

OPE: a series of effective vertices multiplied by effective coupling constants C_i .

Electroweak scale $\sim 1/M_W$ New Physics scale $\sim 1/M_{NP}$

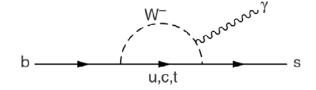
$$C_{i} = C_{i}^{SM} + C_{i}^{NP}$$

$$C'_{i} = C_{i}^{SM} + C'_{i}^{NP}$$

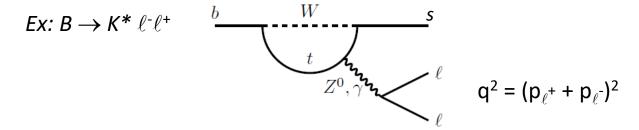
Primed $C'_i \rightarrow right$ handed currents: suppressed in SM

• Wilson coefficients $C_i^{(\prime)}(\mu,\alpha_s)$ encode short-distance physics: sensitive to E> M_{FW} (i.e. E> M_{W} , M_7)

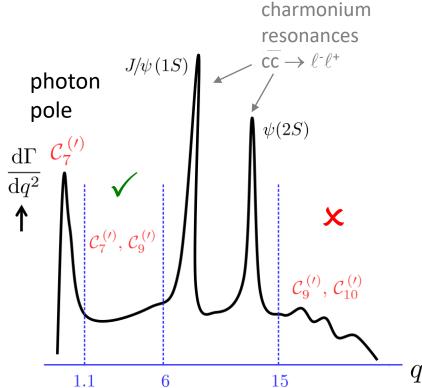
Operator Product Expansion


New Physics expected to affect the Wilson coefficients CSM_i + C_i^{NP}

Wilson coeff. dependence in $b \rightarrow s$ decays (rare processes):


- \rightarrow Leptonic decays: Branching fraction of $B_s \rightarrow \mu^+\mu^-$ (C_{10} ^('))
- \rightarrow Radiative decays: B \rightarrow X_s γ (C₇('))
- \rightarrow Semileptonic decays: angular observables of B \rightarrow X $\ell^+\ell^-$ (C₇('), C₉('), C₁₀('))

Ex: Decay width for $B \to X_s \gamma$


$$\Gamma_{B \to X_s \gamma}^{\text{(SM)}} = \frac{\alpha_{\text{em}} G_F^2 m_b^5}{32\pi^4} |V_{tb} V_{ts}|^2 C_7^2(m_b)$$

Operator Product Expansion

Differential branching fraction: $d\Gamma/dq^2$

SM values (μ = m_b): $C_7 \sim -0.33$ $C_9 \sim 4.27$ $C_{10} \sim -4.17$

(Everything else small or negligible)

B decay anomalies at LHCb

Measurements performed at LHCb:

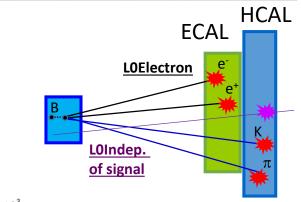
Differential branching fractions

$$(B^0 \rightarrow K^{(*)0} \mu^+ \mu^-, B^+ \rightarrow K^{(*)+} \mu^+ \mu^-, B_s \rightarrow \phi \mu^+ \mu^-, B^+ \rightarrow \pi^+ \mu^+ \mu^- \text{ and } \Lambda_b \rightarrow \Lambda \mu^+ \mu^-)$$

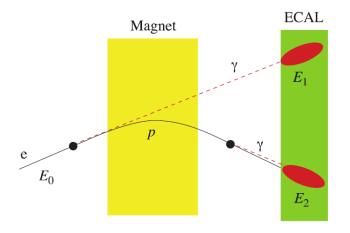
- → Affected by hadronic uncertainties in the theory predictions
- Angular analyses

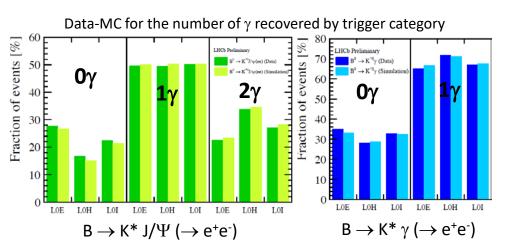
$$(B^0 \rightarrow K^{(*)0}\mu^+\mu^-, B_s \rightarrow \phi\mu^+\mu^- B^0 \rightarrow K^{*0}e^+e^- \text{ and } \Lambda_h \rightarrow \Lambda\mu^+\mu^-)$$

- → Observables with smaller theory uncertainties
- Test of Lepton Flavour Universality

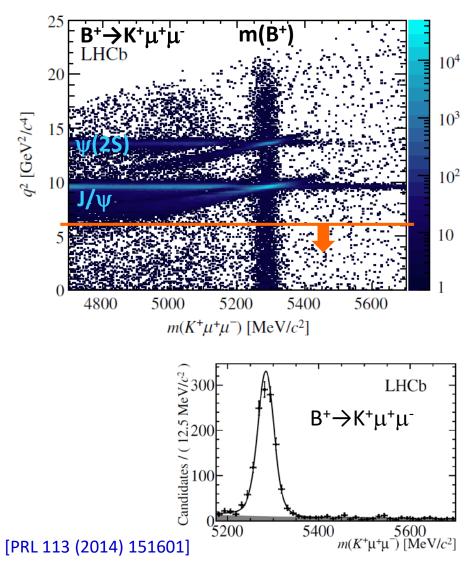

$$(B^+ \rightarrow K^+ \ell^+ \ell^- \text{ and } B^0 \rightarrow K^{*0} \ell^+ \ell^-)$$

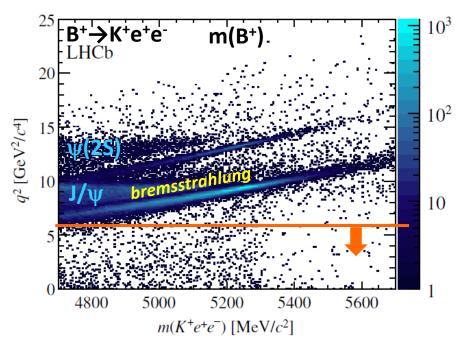
→ Hadronic uncertainties in theory predictions cancel in ratios

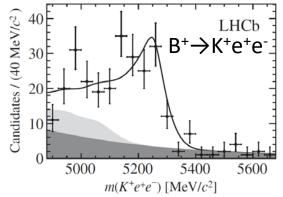

Claim on experimental issues


Decays involving leptons:

- LHCb is far better with muons than electrons
- *Trigger*, reconstruction, selection and particle identification are harder with electrons
- Mass resolution affected by e bremsstrahlung
 → need energy recovery
- Mass shape modelled according to the number of *bremsstrahlung* recovered

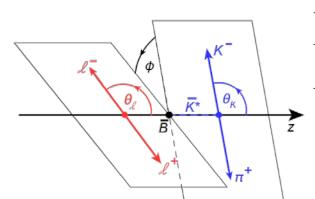





LOHadron

Claim on experimental issues

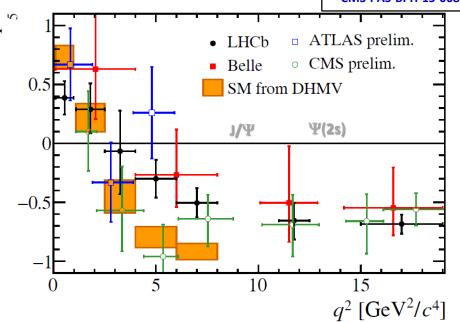
B mass vesus q^2 for $B^+ \rightarrow K^+ \ell^+ \ell^-$



B decay anomalies at LHCb: P'5

Angular distribution in $B \rightarrow K^* \ell^- \ell^+$: q^2 and three angles

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \, \mathrm{d}\cos\theta_K \, \mathrm{d}\phi \, \mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - \cancel{F_L}) \sin^2\theta_K + \cancel{F_L} \cos^2\theta_K \right. \\ \left. + \frac{1}{4} (1 - \cancel{F_L}) \sin^2\theta_K \cos 2\theta_\ell \right] + \frac{1}{4} (1 - \cancel{F_L}) \sin^2\theta_K \cos 2\theta_\ell$$

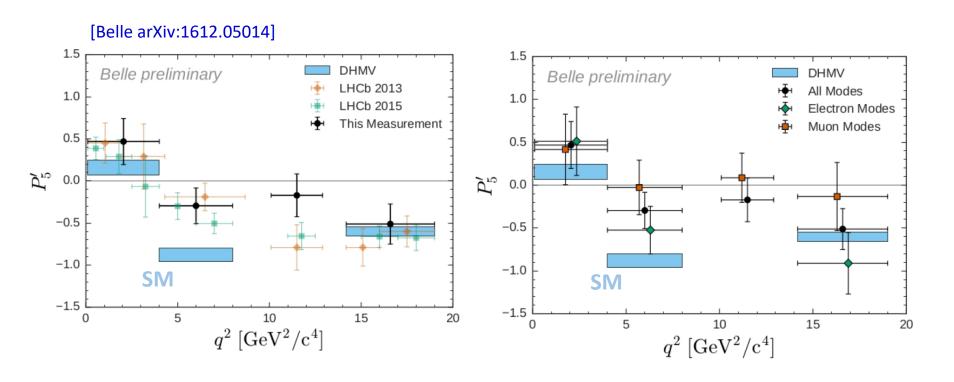


$$-\underbrace{F_L}\cos^2\theta_K\cos 2\theta_\ell + \underbrace{S_3}\sin^2\theta_K\sin^2\theta_\ell\cos 2\phi + \underbrace{S_4}\sin 2\theta_K\sin 2\theta_\ell\cos \phi + \underbrace{S_5}\sin 2\theta_K\sin \theta_\ell\cos \phi + \underbrace{S_6}\sin^2\theta_K\cos \theta_\ell + \underbrace{S_7}\sin 2\theta_K\sin \theta_\ell\sin \phi$$

$$+S_8\sin 2\theta_K\sin 2\theta_\ell\sin\phi + S_9\sin^2\theta_K\sin^2\theta_\ell\sin 2\phi$$

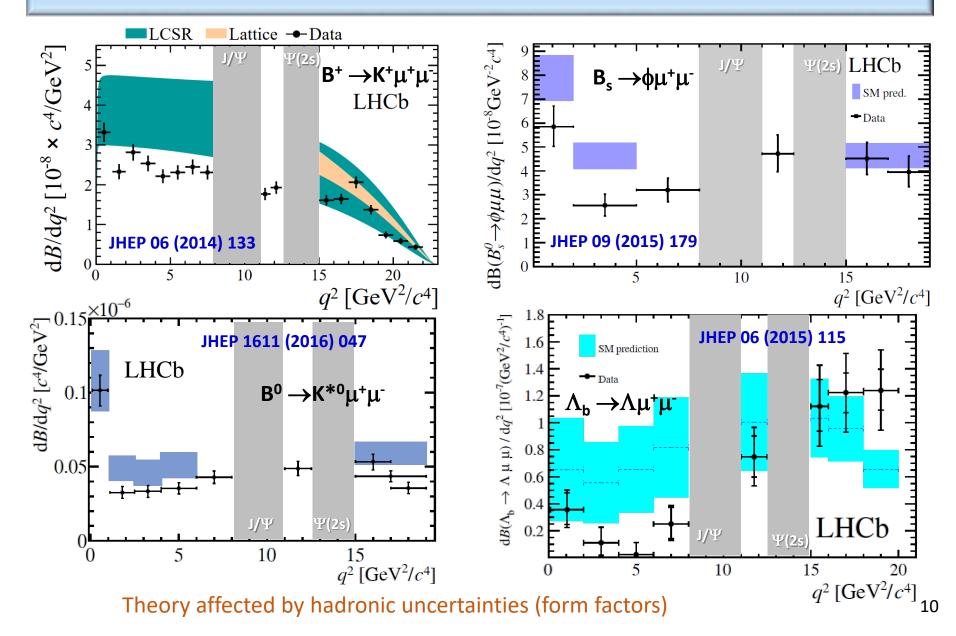
$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$

Functions of q² and Wilson coef. **C**_i Optimized observables: cancelation of form factor dependencies: P'_i


[Descotes-Genon et al, JHEP 05 (2013) 137]

[•] PRL 118 (2017) 111801

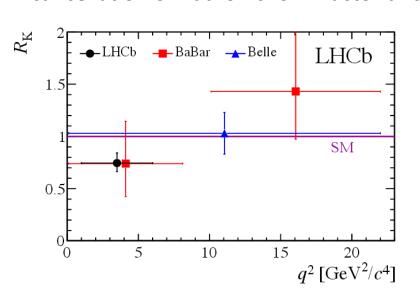
[•] ATLAS-CONF-2017-023


B decay anomalies at LHCb: P'5

Angular distribution in $B \rightarrow K^* \ell^- \ell^+$: Muons vs Electrons at Belle:

Everything consistent, P'5 anomaly confirmed, still large statistical uncertainties, but... mode with electrons is more SM compatible ... (?)

B decay anomalies at LHCb: d[BR's]/dq²


B decay anomalies at LHCb: R_K

Theory clean observable

In the SM all leptons are expected to behave in the same way:

$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)} = 1.000 + O(m_{\mu}^2/m_b^2) \text{ (SM)}$$

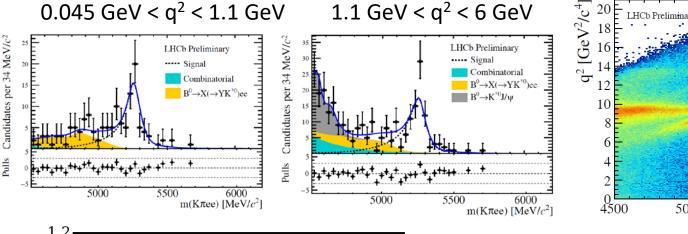
- Experimentally, use the B \to K J/ ψ (\to ee) and B \to K J/ ψ (\to $\mu\mu$) to perform a double ratio
- Precise theory prediction due to cancellation of hadronic form factor uncertainties

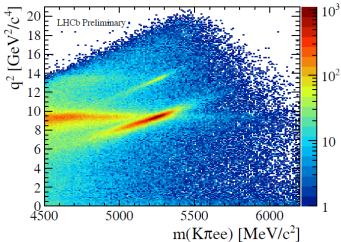
 $1 \text{ GeV} < q^2 < 6 \text{ GeV}$ [PRL 113 (2014) 151601]

$$R_K = 0.745^{+0.090}_{-0.074} \text{ (stat) } \pm 0.036 \text{ (syst)}$$

 \rightarrow Consistent, but lower, than the SM at 2.6 σ

B decay anomalies at LHCb: R_{K*}


SM


Theory clean observable

1.000(6)

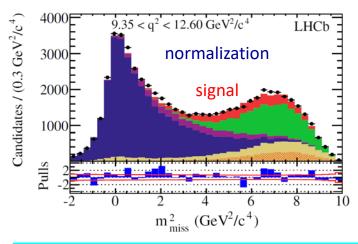
$$\mathcal{R}_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}$$

[CERN Seminar, 18th April 2017]

1.2							
	├ ' ' ' ' '	1 1 1 1					' ' -
$0.1\mathop{\not\approx}\limits_{\stackrel{\circ}{K}}$	-						1
1.0 کے	_				<u> </u>		
<u>(</u>	_ <u> </u>						
0.8	-				_		_
0.6	_ - T						_
					•		<u> </u>
0.6	_ I				L		_
	_						-
0.4	-			· T ·	T TT (2)	0007 0007 (α τ −
0.4	<u> </u>			₩		68%,95% (-
	E			•	SM from	CDGHM	V -
0.2	_			<u> </u>	SM from	EOS	_
	LHCb	Prelim	inary		SM from	flav io	1
0.0	-		1		DWI HOIII	1147.10	, , -
0.0) 1		2	3	4	5	6
	_		_	-	~2	$[GeV^2]$	/ 41
					q^{-}	[Gev=/	c

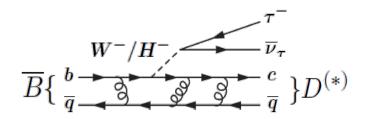
	$low-q^2$	central- q^2		
$\mathcal{R}_{K^{*0}}$	$0.660^{+0.110}_{-0.070} \pm 0.024$	$0.685 ^{+~0.113}_{-~0.069} \pm 0.047$		
95% CL	0.517 – 0.891	0.530-0.935		

0.922(22)

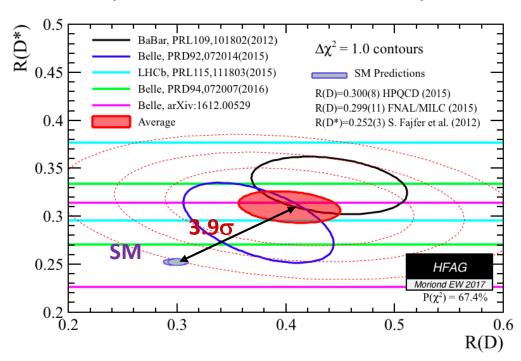

 \rightarrow Consistent, but lower than the SM at 2.2-2.4 σ (low q²) and 2.5-2.6 σ (central q²)

Other B decay anomalies: R_{D(*)}

$b \rightarrow c$ anomalies:

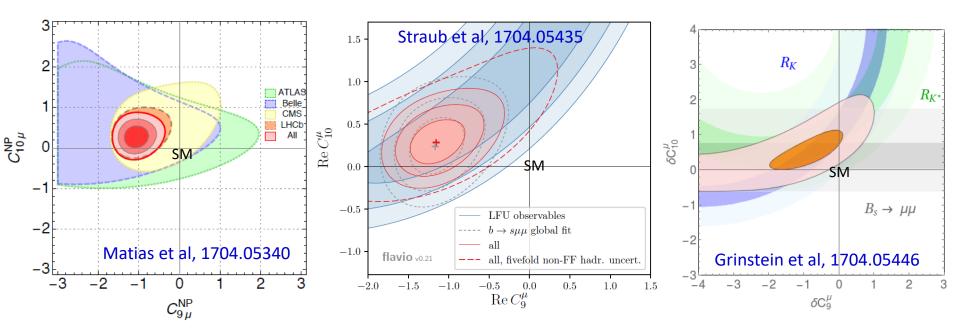

$$\mathcal{R}(D^*) = \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})}$$

• Information from the missing mass squared $m_{miss}^2 = (P_B - P_{D^*} - P_{\mu})^2$ and muon energy in several q^2 bins


$$\mathcal{R}(D^*) = 0.336 \pm 0.027(\text{stat}) \pm 0.030(\text{syst})$$

[PRL 115, 111803 (2015)]

Even if of different type (tree level) it can be correlated to the LFU violation in $b \rightarrow s \ell^+ \ell^-$


(but... form factor effects here ?)

Interpretation

Global fits (some cases with more than 100 observables)

More from Lars

New Physics hypothesis preferred over SM by more than $4 - 5\sigma$ Main effect on the $C_{9\mu}$ coefficient: **4.27**SM **-1.1**^{NP}

Triggered models with Z', leptoquarks (LQ), and composite Higgs

Prospects at LHCb

More from Fernando

- Br($B_s \rightarrow \mu^+ \mu^-$) and Br($B_d \rightarrow \mu^+ \mu^-$) with Run2
- R_K with improved Run1 data (new calo reco) + Run2
- R_{ϕ} : narrower resonance as compared to K*, but less stat. (f_s/f_d) $\mathcal{R}_{\phi} = \frac{\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-)}{\mathcal{B}(B_s^0 \to \phi e^+ e^-)}$
- $R_{\Lambda^{(*)}}$: lepton universality in baryons, different spin structure $\mathcal{R}_{\Lambda^{(*)}} = \frac{\mathcal{B}(\Lambda_b \to \Lambda^{(*)} \mu^+ \mu^-)}{\mathcal{B}(\Lambda_b \to \Lambda^{(*)} e^+ e^-)}$
- Angular analysis of B⁺ \rightarrow K⁺ ℓ ⁻ ℓ , B⁰ \rightarrow K^{*0} ℓ ⁺ ℓ ⁻ ...
- Branching fractions, isospin asymmetries ... in $B \rightarrow X \ell^+ \ell^-$
- $B_s \rightarrow \varphi \gamma$, $B \rightarrow K^* \gamma$, $B \rightarrow K \pi \pi \gamma$, $\Lambda_b \rightarrow \Lambda \gamma$, $\Xi_b \rightarrow \Xi \gamma$...

channel	$ $ 3fb $^{-1}$	Run 2	Upgrade ($50 \mathrm{fb}^{-1}$)
$B^0 \to K^{*0}(K^+\pi^-)\mu^+\mu^-$	2,400	9,000	80,000
$B^0 o K^{*+} (K_{\rm S}^0 \pi^+) \mu^+ \mu^-$	160	600	5,500
$B^0 ightarrow \mathcal{K}^0_{ m S} \mu^+ \mu^-$	180	650	5,500
$B^+ ightarrow ilde{K}^+ \mu^+ \mu^-$	4700	17,500	150,000
$B^+ o \pi^+ \mu^+ \mu^-$	93	350	3,000
$B_s^0 o \mu^+\mu^-$	15	60	500
$\mathcal{B}^{ar{0}} ightarrow \mathcal{K}^{*0} e^+ e^-$	150	550	5,000