Experimental wish list

May 8-9 2017 IFT, Madrid Alberto Casas

Experimental wish list:

Experimental wish list:

- ★ Certainly, we have not seen any BSM physics yet
- ★ However, the reasons to believe in BSM remain almost intact:
 - Origin of the EW scale (naturalness)
 - Flavour puzzle
 - Dark Matter

•

•

•

I will focus on these three

- Origin of the EW scale (naturalness)
- Flavour mysteries
- Dark Matter

These are very strong indications of BSM physics

... but not necessarily in a scale potencially reachable by current experiments, except the Naturalness Problem.

Naturalness problem

Simple (maybe naive) arguments, related to the size of the EW scale, suggest that

$$\Lambda_{\rm NP} \lesssim \mathcal{O}({
m TeV})$$

However, it should be noticed that the naturalness bound applies to the BSM physics associated to the top

$$\delta m^2 = \frac{\Lambda^2}{4\pi^2 v^2} \left(-3m_t^2 + \cdots \right)$$

$$\left| \frac{\delta m^2}{m^2} \right| \le 10 \quad \Rightarrow \quad \Lambda \lesssim 1.5 \text{ TeV}$$

from J. Cuevas talk

Still a lot of space to explore!

Naturalness problem

Another promising territory to explore is Higgs physics:

- ★ Directly related to the naturalness problem
- \star Still large uncertainties and many important SM predictions to be tested: $y_{\mu\mu}, \lambda_3, \lambda_4, \cdots$

★ Last sector of SM discovered: new opportunities to find BSM

Flavour puzzles

We do not have a theory of flavour (it is a big mystery).

So we can only hope that "by chance" we will discover some New Physics relevant for flavour at LHC

Maybe LHCb anomalies? It is a hope, although difficult to understand theoretically.

Flavour puzzles

All explanations so far proposed only "accommodate" the anomalies.

E.g.

ightharpoonup simultaneous solution of $R_{K^{(*)}}$ and $R_{D^{(*)}}$ requires two scalar lepto-quarks: [Crivellin,Müller,Ota'17]

 Φ_3 : $SU(2)_L$ triplet, Φ_1 : $SU(2)_L$ singlet

SU(2) singlet Φ_1 needed to cancel contribution to $b \to s\nu\bar{\nu}$

But they do not offer hints about a theory of flavour.

Flavour puzzles

But, of course, if confirmed, LHCb anomalies would be a great discovery

Prospects at LHCb

- Br($B_s \rightarrow \mu^+ \mu^-$) and Br($B_d \rightarrow \mu^+ \mu^-$) with Run2
- R_K with improved Run1 data (new calo reco) + Run2
- R_{ϕ} : narrower resonance as compared to K*, but less stat. (f_s/f_d) $\mathcal{R}_{\phi} = \frac{\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-)}{\mathcal{B}(B_s^0 \to \phi e^+ e^-)}$
- $R_{\Lambda^{(*)}}$: lepton universality in baryons, different spin structure $\mathcal{R}_{\Lambda^{(*)}} = \frac{\mathcal{B}(\Lambda_b \to \Lambda^{(*)} \mu^+ \mu^-)}{\mathcal{B}(\Lambda_b \to \Lambda^{(*)} e^+ e^-)}$
- Angular analysis of B⁺ \rightarrow K⁺ ℓ ⁺ ℓ ⁻, B⁰ \rightarrow K^{*0} ℓ ⁺ ℓ ⁻ ...
- Branching fractions, isospin asymmetries ... in $B \rightarrow X \ell^+ \ell^-$
- $B_s \rightarrow \varphi \gamma$, $B \rightarrow K^* \gamma$, $B \rightarrow K \pi \pi \gamma$, $\Lambda_b \rightarrow \Lambda \gamma$, $\Xi_b \rightarrow \Xi \gamma$...

When will we have a confirmation of the R-anomalies??

Dark Matter

Maybe the strongest signal of BSM physics

We can hope a positive detection at LHC if DM is a WIMP

Unfortunately, there is Direct-Detection "Tsunami" in the WIMP parameter space

Dark Matter

Several strategies to discover WIMPS at LHC

- Mono-X + MET, $t\bar{t}$ +MET
- Di-jet (DM mediator) resonances
- Contribution to Higgs invisible width

Already LHC provides the strongest bounds for the spin-dependent DM-nucleon cross section, and spin-independent DM-nucleon cross section for $m_{DM} < 10$ GeV, though they are model-dependent

New ideas for WIMP discovery??

Conclusion

So far great experimental job.

Please continue pursuing the search for BSM in any conceivable way.