

Event: 12611816 Date: 2012-06-18 Time: 11:07:47 CES

Few highlights from the workshop on searches for long-lived particles at the LHC

Martine Bosman
9 May 2017

Searches for long-lived particles at the LHC: Workshop of the LHC LLP Community

https://indico.cern.ch/event/607314/

The world is full of long-lived particles In the Standard Model: $p,n,\pi,\mu,\tau,...$ Why?

conservation laws

e.g. quark flavour only violated by EW interaction highly off-shell π decay

e.g. lepton flavour only violated by tiny yukawa couplings

$$\Gamma_{\pi^+} \approx g_W^2 \left(\frac{M_{\pi}}{M_W}\right)^4 M_{\pi}$$

$$BR(\mu \rightarrow e\gamma) \approx 10^{-54}$$

approximate symmetries particles nearly degenerated:

e.g. isospin symmetry highly off-shell neutron decay

$$\Gamma_N \approx g_W^2 \left(\frac{M_N - M_P}{M_W} \right)^4 (M_N - M_P)$$

Also happens in BSM models!

Characteristics of Long Lived Particles

- neutral or charged particle with macroscopic reconstructable flight distance or quasi stable (charged)
- light or heavy, fast or slow, can decay to quarks, leptons, gluons...

They need dedicated searches, ... very sensitive to lifetime

No one-size-fits-all approach – decay products, lifetime, mass, boost all dramatically affect the detector signature

...and all subdetectors must be used for optimal results

Heather Russell

Charged tracks

(meta-)stable charged particles

travel through the detector like muons but different ionization consider models with "muon-like", quasistable sleptons, R-hadron (may change from charged to neutral) trigger: muon, (or large Etmiss) NB trigger is important for acceptance! (Phys. Rev. D 94 (2016) 112004)

charged LLP may generate **disappearing** tracks, for example SUSY Winos (ATLAS-CONF-2017-017) degeneracy of NLSP-LSP masses if little mixing between Higgsino/gauginos Need to trigger on rest of events (ETmiss)

Heather Russell

LLPs decays to leptons in inner tracker

CMS and ATLAS

- 1) Look for displaced di-lepton vertices (with no track pointing back to the IP)
- 2) Look for displaced leptons in charged LLP decays

specialized triggers needed for both ATLAS and CMS for example e-mu pairs without pointing requirement CMS-PAS-EXO-16-022

LHCb

designed to reconstruct "displaced" vertices from B-meson decays. adapt to look for long-lived particles produced in the B-meson decays (PRL 115, 161802 (2015))

Heather Russell

LLPs decays to leptons after the inner tracker

Di-muon vertex outside of the tracker example CMS-PAS-EXO-14-012

boosted, light LLPs produce collimated leptons (lepton-jet) example ATLAS-CONF-2016-042

Muons without associated inner detector tracks are more susceptible to cosmic backgrounds, beam halo. Specialized trigger needed in both cases

Heather Russell

emerging jets

new signature, resulting from a dark shower

jet slowly emerges as the LLPs decay to SM particles

- many secondary vertices in the jet cone
- non-standard model jet evolution

issues: trigger (beyond HT), jet reconstruction efficiency, displaced vertices reconstruction efficiency

decays in the calorimeter

leave a narrow, low-ElectromagneticFraction trackless jet

issues: background from cosmic showers, beam halo

similar signature whether the LLP decays to hadrons or to collimated electrons (lepton-jets)

valid for LLP masses: 400 MeV to 400 GeV

IFAE

Heather Russell

late decays in calorimeters

out-of-time energy deposits

→ use empty bunch-crossings sensitive to lifetime of the order of days

- CMS uses standard jets
- ATLAS jets with > 50% of energy in HCAL

issues: cosmic muons, beam halo

decays in the muon system

ATLAS: tracking in the muon system multitrack vertices not associated to inner detector tracks or calorimeter jets.

Apply to $H \rightarrow LLP$ pairs requires two displaced vertices:

- both in muon spectrometer
- one in MS with one multitrack ID vertex

different sensitivity to mass and lifetime of LLP arXiv:1504.03634; arXiv:1501.04020

Heather Russell

Difficulties of high energy, high luminosity regime

- 13 TeV searches vs 8 TeV searches
 - for equivalent benchmarks LLPs are more boosted at 13 TeV
- Pileup is getting ever higher
 - LLPs might not seem as "isolated" from prompt activity as they once were: need pileup mitigation techniques
- Background
 - some specific backgrounds to LLP: non-prompt, non-collision backgrounds (cosmics, beam halo)
 - many searches are background free but maybe not true anymore in pushed to low mass
- Rate of collisions is also increasing
 - Triggering on low-mass states is becoming more difficult
 - less dependent on event activity beyond LLP itself: tracking at L1, use of timing ...
 - but keep using associated activity when possible
 - seeding LLP analysis with more than one trigger

Brian Shuve

Heather Russell

LLP Models: Supersymmetry

- Production typically through new particles charged under SM gauge interactions (gluinos, stops, Higgsinos, etc.)
 - Some new, heavy particles in spectrum
 - Can have prompt production of jets, leptons, MET, ...
 - Often LLP pairs
- LLP decays give jets, leptons, MET, or could be stable & charged
- Sometimes spectra are compressed, so there is still benefit in looking at searches for softer objects

Brian Shuve

IFAF

LLP Models: Hidden Sectors

- New particles may (likely) be SM singlets, dominantly couple to SM via singlet portals
- Different "portals": Higgs, vector, neutrino, axion

- Could be any mass! Want to look for low-mass LLPs in addition to larger than weak scale
- Can have many different:
 - Masses
 - Lifetimes
 - Associated objects
 - Decay modes/stable exotic particle states
 - LLP multiplicities

Brian Shuve

A Systematic Approach to Searches

- Searches often target/are optimized for particular model
 - Fine balance between targeting a well-motivated model and providing reinterpretable results
 - If each analysis uses its own model, combinations and comparisons are difficult
 - LLP searches can be inclusive enough to have excellent sensitivity to a range of scenarios
- Want to identify a minimal set of motivated searches that covers as many scenarios as possible while being reasonably achievable
 - Identify motivated, non-redundant list of simplified models

Brian Shuve

Simplified models

production

decay


```
LLP decay modes
 e+inv
              ee
                                   eγ
 μ+inv
                             μe
              μμ
                                   μγ
 \tau+inv
                             μτ
                                   τγ
 j+inv
                             	aue
 γ+inv
              XX
Also, xy + inv with or without xy resonance
```

spans most LLP simplified models, but nor dark showers

Jared Evans

Presentation of results

- Searches should be (reasonably) easily reinterpretable: RECASTING
 - provide cut flow tables, detailed description of signal, trigger, efficiency maps, etc.
 - Efficiency maps for LLPs: eff(m, β , θ ,L)
 - Simplified models, m vs cτ efficiencies
 - Or compromise? eff(L, β) for a few m / Δ m

Jared Evans

IFAF

Conclusion

- A very active field
- The community is getting organised
- Room for contributions!
 - Run 2 data will provide interesting coverage
 - Many specific experimental challenges
 - Input from theorists is needed (also in workshop discussion)
 - Upgrade may open additional possibilities