

Felipe J. Llanes Estrada Departamento de Física Teórica I Universidad Complutense de Madrid

Resonances of the Electroweak Symmetry Breaking Sector in unitarized Higgs-EFT

Universidad Autónoma-CSIC, Instituto de Física Teórica, May 8th 2017

Long term collaboration with Antonio Dobado, Rafael L. Delgado Andrés Castillo, and students Iván León Merino, Miguel Espada

Beyond-SM physics at the LHC (as of May 2017)

Error: blank

contact your system manager

While waiting for "well motivated BSM physics"

Try
Effective Field Theory
for the particles
that we do see

ArXiv:1610.07922 contains an *aperçu* (CERN Yellow Report #4 of the Higgs Cross Section Working Group)

Energy desert or Gap in the spectrum?

New physics? 600 GeV GAP H (125.9 GeV, PDG 2013) W (80.4 GeV), Z (91.2 GeV) Nothing?

Enjoy the campus...

Small cross section Keep turning stones

New physics at higher E Goldstone bosons?

Gap → Strongly Interacting EWSBS

Longitudinal gauge boson scattering is the key

Physical spectrum well below new physics:

3 WBGB $\omega^a \sim W_L^a + one light scalar h$

$$M_h^2 \sim M_W^2 \sim M_Z^2 \sim M_t^2 \sim (100 \text{ GeV})^2 << (500-700 \text{ GeV})^2$$

But among the 39 papers of CMS to Moriond 2017 https://cms.cern/news/cms-new-results-Moriond-2017 You cannot find "longitudinal" nor " $W_{\rm L}$ "

This is the background image of the current CMS webpage

LO amplitudes: EWSBS $\omega \omega$, hh $M_h^2 \ll s < 4\pi v \simeq 3 \, \text{TeV}$.

$$M_h^2 \ll s < 4\pi v \simeq 3 \, \text{TeV}$$

$$T(\omega^+\omega^- \to \omega^+\omega^-) = \frac{s+t}{v^2}(1-a^2)$$

$$T(\omega^a \omega^b \to hh) = \frac{s}{v^2} (a^2 - b) \delta_{ab}$$

$$T(\omega^a \omega^b \to hh) = \frac{s}{v^2}(a^2 - b)\delta_{ab}$$

$$T(hh \to hh) = 0$$

Generalize Weinberg low-energy theorems for pion scattering

Contino, Grojean, Moretti, Piccinini, Ratazzi

Automation of HEFT computations in perturbation theory

Lagrangian → FeynRules (vertices)

- → FeynArts (diagrams)
- → FormCalc (NLO scattering amplitudes)

All programmed by our recent grad student Rafael Delgado

Fortran: Numerically Evaluate the amplitudes and unitarize

One-loop Feynman diagrams for

$$\omega_a \omega_b \to \omega_c \omega_d$$

One-loop Feynman diagrams for $\omega_a\omega_b \to hh$

One-loop Feynman diagrams for

 $hh \to hh$

Resulting one-loop amplitudes

$$h h \longrightarrow h h$$

$$T(s,t,u) = \frac{2\gamma^r(\mu)}{v^4}(s^2 + t^2 + u^2) + \frac{3(a^2 - b)^2}{32\pi^2 v^4} \left[2(s^2 + t^2 + u^2) - s^2 \log \frac{-s}{\mu^2} - t^2 \log \frac{-t}{\mu^2} - u^2 \log \frac{-u}{\mu^2} \right]$$

$$\gamma^r(\mu) = \gamma^r(\mu_0) - \frac{3}{64\pi^2}(a^2 - b)^2 \log \frac{\mu^2}{\mu_0^2}$$

Resulting one-loop amplitudes

$$\omega \omega \longrightarrow \omega \omega$$
 (elastic scattering)

$$T_{abcd} = A(s,t,u)\delta_{ab}\delta_{cd} + B(s,t,u)\delta_{ac}\delta_{bd} + C(s.t.u)\delta_{ad}\delta_{bc}$$

$$\begin{split} A(s,t,u) &= \frac{s}{v^2}(1-a^2) + \frac{4}{v^4}[2a_5^r(\mu)s^2 + a_4^r(\mu)(t^2+u^2)] \\ &+ \frac{1}{16\pi^2v^4} \left(\frac{1}{9}(14a^4 - 10a^2 - 18a^2b + 9b^2 + 5)s^2 + \frac{13}{18}(a^2-1)^2(t^2+u^2) \right. \\ &- \frac{1}{2}(2a^4 - 2a^2 - 2a^2b + b^2 + 1)s^2\log\frac{-s}{\mu^2} \\ &+ \frac{1}{12}(1-a^2)^2(s^2 - 3t^2 - u^2)\log\frac{-t}{\mu^2} \\ &+ \frac{1}{12}(1-a^2)^2(s^2 - t^2 - 3u^2)\log\frac{-u}{\mu^2} \right) \; . \end{split}$$

$$a_4^r(\mu) = a_4^r(\mu_0) - \frac{1}{192\pi^2} (1 - a^2)^2 \log \frac{\mu^2}{\mu_0^2}$$

$$a_5^r(\mu) = a_5^r(\mu_0) - \frac{1}{768\pi^2} (2 + 5a^4 - 4a^2 - 6a^2b + 3b^2) \log \frac{\mu^2}{\mu_0^2}$$

Resulting one-loop amplitudes $\omega \omega \longrightarrow h h$

$$\mathcal{M}_{ab}(s,t,u) = M(s,t,u)\delta_{ab}$$

$$M(s,t,u) = \frac{a^2 - b}{v^2} s + \frac{2\delta^r(\mu)}{v^4} s^2 + \frac{\eta^r(\mu)}{v^4} (t^2 + u^2)$$

$$+ \frac{(a^2 - b)}{576\pi^2 v^4} \left\{ \left[72 - 88a^2 + 16b + 36(a^2 - 1) \log \frac{-s}{\mu^2} \right] + 3(a^2 - b) \left(\log \frac{-t}{\mu^2} + \log \frac{-u}{\mu^2} \right) \right\} s^2$$

$$+ (a^2 - b) \left(26 - 9 \log \frac{-t}{\mu^2} - 3 \log \frac{-u}{\mu^2} \right) t^2$$

$$+ (a^2 - b) \left(26 - 9 \log \frac{-u}{\mu^2} - 3 \log \frac{-t}{\mu^2} \right) u^2 \right\}$$

$$\delta^{r}(\mu) = \delta^{r}(\mu_{0}) + \frac{1}{192\pi^{2}}(a^{2} - b)(7a^{2} - b - 6)\log\frac{\mu^{2}}{\mu_{0}^{2}}$$
$$\eta^{r}(\mu) = \eta(\mu_{0}) - \frac{1}{48\pi^{2}}(a^{2} - b)^{2}\log\frac{\mu^{2}}{\mu_{0}^{2}}.$$

BSM Amplitudes in EFT grow with energy and eventually **violate unitarity bound** at some new physics scale:

Problem of perturbation theory

Blaming it to the Lagrangian is wrong logic

Unitarity is simplest for partial waves

$$\omega \omega \longrightarrow \omega \omega$$

$$Im F(s) = F(s) F^{\dagger}(s)$$

$$\operatorname{Im} A_{IJ} = |A_{IJ}|^2$$

$$|A_{IJ}|^2 \leq 1$$

$$A_{IJ}(s) = A_{IJ}^{(0)}(s) + A_{IJ}^{(1)}(s) + ...,$$

$$\begin{split} A_{IJ}^{(0)}(s) &= Ks \\ A_{IJ}^{(1)}(s) &= s^2 \left(B(\mu) + D \log \frac{s}{\mu^2} + E \log \frac{-s}{\mu^2} \right) \end{split}$$

(Perturbation theory satisfies it to one order less than calculated)

Unitarity is a consequence of probabilities adding to one

Slight violations... long term you lose

LO partial waves

$$A_0^0 = rac{1}{16\pi v^2} (1-a^2)s$$
 $A_1^1 = rac{1}{96\pi v^2} (1-a^2)s$
 $A_2^0 = -rac{1}{32\pi v^2} (1-a^2)s$
 $M^0 = rac{\sqrt{3}}{32\pi v^2} (a^2-b)s$

Phys.Rev. D91 (2015) 075017

EFT parameters evtly. Resonances at much higher E measured here @LHC

EFT parameters evtly.
measured here @LHC

Resonances at much higher E

Can discuss resonances without new parameters

Left cut: use the EFT

Right cut: use exact elastic unitarity for the inverse amplitude

DISPERSION
RELATION
for complex s

$$A_{IJ}^{IAM}(s) = \frac{(A_{IJ}^{(0)}(s))^2}{A_{IJ}^{(0)}(s) - A_{IJ}^{(1)}(s)}$$

Subtractions at low s where the EFT can be used

We have published three major unitarization methods

IJ	00	02	11	20	22
Method	Any	N/D, IK	IAM	Any	N/D, IK

Generally:

Resonating amplitudes (s-channel) → quantitative agreement

Potential-dominated amplitudes (left cut) → qualitative

Poles in the s-complex plane are now possible

A coupled channel resonance (I=J=0)

$$a = 1, b = 2$$

Phys.Rev.Lett. 114 (2015) no.22, 221803

"Pinball resonance"

 $b \in (-1,3)$

Predictive power of EFT+dispersion Relation?

Can it predict new physics coupled to EWSBS? NO

What it can do:

- *) If the LHC precision program measures EFT couplings ≠ SM → can evtly. predict resonances (no new parameters)
- *) Resonance @ LHC \rightarrow describe line shape and constrain M, Γ , LECs.
- *) It can then predict the line shape of production amplitudes in weakly coupled channels (Watson's f.s.t.) from the same underlying complex plane pole.

Production at the LHC and e⁻e⁺ colliders

Tree-level p-like resonance

From transverse boson with IAM Form factor (Watson's final state theorem)

$$F_V(s) = F_{11}(s) = \left[1 - \frac{A_{11}^{(1)}(s)}{A_{11}^{(0)}(s)}\right]^{-1}.$$

Commun.Theor.Phys. 64 (2015) 701-709

$$\frac{d\hat{\sigma}(u\overline{d} \to w^+ z)}{d\Omega_{\text{CM}}} = \frac{1}{64\pi^2 s} \left(\frac{1}{4}\right) \left(\frac{g^4}{8}\right) |F_V(s)|^2 \sin^2 \theta .$$

Typical TeV-scale
cross sections
are smaller
than current data allows

Quantum numbers other than J=I=1; need to emit >1 boson

EM field near fast charge ~ transverse wave

Weizsäcker-Williams or "equivalent boson approx." for collinear W emission (Very crude: would have worked better at the SSC)

Here, I=2 (can yield signals in all of WW, ZZ and WZ)

$$\frac{d\sigma}{ds} = \int_0^1 dx_+ \int_0^1 dx_- \,\hat{\sigma}(s) \,\delta(s - x_+ x_- E_{\text{tot}}^2) \,\left[F_1(x_+) F_2(x_-) + F_2(x_-) F_1(x_+) \right]$$

$$F_{W_L}(x) = g_W \frac{1-x}{x}, \qquad F_{Z_L}(x) = g_Z \frac{1-x}{x},$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$\gamma\gamma \longleftrightarrow Z_L Z_L$, $W_L W_L$, hh at one-loop

- *) resonances can appear in clean $\gamma\gamma$ final state
- *) EM production not negligible, charged-particle colliders are photon colliders

Electromagnetic production of EWSBS

pp (or ee) $\rightarrow \gamma\gamma$ +pp (or ee) $\rightarrow \omega\omega$ +pp (or ee)

$$\frac{d\sigma_{\gamma\gamma\to\omega\omega}}{d\Omega} = \frac{1}{64\pi^2 s_{\gamma\gamma}} \frac{1}{4} \sum_{j} |M_J|^2 =$$

$$= \frac{16\pi}{s_{\gamma\gamma}} \sum_{I \in \{0,2\}} \left[\left[\tilde{P}_{I0} Y_{0,0} (\Omega) \right]^2 + \left[\tilde{P}_{I2} Y_{2,2} (\Omega) \right]^2 + \left[\tilde{P}_{I2} Y_{2,-2} (\Omega) \right]^2 \right] =$$

Here in the $\gamma\gamma \rightarrow \omega\omega$ cross section

Electromagnetic production of EWSBS

pp (or ee) $\rightarrow \gamma\gamma$ +pp (or ee) $\rightarrow \omega\omega$ +pp (or ee)

$$\frac{d\sigma}{dsdp_T^2}\left(s_{\gamma\gamma},\theta\right) = \frac{1}{s_{\gamma\gamma}} \int_{x_{min}}^{x_{max}} dx_1 \frac{f\left(x_1\right)}{x_1} f\left(\frac{s_{\gamma\gamma}}{s_{ee}x}\right) \frac{d\sigma_{\gamma\gamma\to\omega\omega}\left(s_{\gamma\gamma},\theta\right)}{dp_T^2}$$

 $e \rightarrow \gamma e$

 $p \rightarrow \gamma p$ (elastic)

Electromagnetic production of EWSBS

pp (or ee) $\rightarrow \gamma\gamma$ +pp (or ee) $\rightarrow \omega\omega$ +pp (or ee)

Here in pp $\rightarrow \gamma\gamma \rightarrow \omega\omega$ Elastic contribution (protons scatter intact)

 $\omega\omega \to \omega\omega$

 $\omega\omega \rightarrow tt$

Conclusions:

EWgap: scattering of "Low-Energy" particles W_L , Z_L , h described by

non-linear HEFT at 1-loop + dispersion relations, Equivalence Theorem

Generically strongly interacting → resonances

Coupling to $\gamma\gamma$, tt available

More work needed for realistic predictions; but with cross sections at hand it appears that the LHC could not yet have found strong resonances of the EWSBS above 1 TeV.

Theory reach: up to $4\pi v \sim 3$ TeV or, if new physics with "low-E" scale f, $4\pi f$

We can in principle provide differential cross sections to swipe EFT parameter space with resonance-search data

Felipe J. Llanes Estrada Departamento de Física Teórica I Universidad Complutense de Madrid

Resonances of the Electroweak Symmetry Breaking Sector in unitarized Higgs-EFT

Universidad Autónoma-CSIC, Instituto de Física Teórica, May 8th 2017

Long term collaboration with Antonio Dobado, Rafael L. Delgado Andrés Castillo, and students Iván León Merino, Miguel Espada

Spare Slides

LHC window to EWSBS: $W_L W_L$ scattering at high energy

Equivalence Theorem: use Goldstone instead of gauge bosons

$$= \times (1 + O(\frac{M_W^2}{E_W^2}))$$

$$T(\omega^a\omega^b\to\omega^c\omega^d)=T(W_L^aW_L^b\to W_L^cW_L^d)+O(\frac{M_W}{\sqrt{s}})$$

LO Effective Lagrangian

Therefore, HEFT for the EWSBS at low-energy may be taken as a

$$\mathcal{L}_0 = \frac{v^2}{4} \mathcal{F}(h) (D_\mu U)^\dagger D^\mu U + \frac{1}{2} \partial_\mu h \partial^\mu h - V(h) \qquad \mathcal{F}(h) = 1 + 2a \frac{h}{v} + b \left(\frac{h}{v}\right)^2 + \dots$$

$$\mathcal{F}(h) = 1 + 2a\frac{h}{v} + b\left(\frac{h}{v}\right)^2 + \dots$$

(Gauged) NLSM U = WBGB Fields (GB or pions)

"Small" effects at the 500 GeV scale:

$$D_{\mu}U = \partial_{\mu}U + W_{\mu}U - UY_{\mu}$$
 $SU(2)_{L} \times U(1)_{Y}$ Covariant derivatives

$$SU(2)_L \times U(1)_Y$$

$$V(h) = \sum_{n=0}^{\infty} V_n h^n \equiv V_0 + \frac{1}{2} M_h^2 h^2 + d_3 \frac{M_h^2}{2v} h^3 + d_4 \frac{M_h^2}{8v^2} h^4 + \dots$$

Potential

Interesting particular cases:

*Minimal Standard Model:

$$a = b = c = c_i = d_i = 1$$

 $a_i = 0$

*No-Higgs Model (ruled ou a = b = c = 0

*Minimal Dilaton Model (also disfavored by run I)

$$h = \varphi$$

$$f \neq v$$

New scale
$$f \neq v$$
 $a^2 = b = \frac{v^2}{\hat{f}^2}$

$$V(\varphi) = \frac{M_{\varphi}^2}{4f^2}(\varphi + f)^2 \left[\log \left(1 + \frac{\varphi}{f} \right) - \frac{1}{4} \right]$$

(Halyo, Goldberber, Grinstein, Skiba)

*Minimal Composite Higgs Mod $f \neq v$

$$\xi = v^2/f^2$$

MCHM4	MCHM5
$a = \sqrt{1 - \xi}$	$a = \sqrt{1 - \xi}$
$b = 1 - 2\xi$	$b = 1 - 2\xi$
$c = \sqrt{1 - \xi}$	$c = \frac{1 - 2\xi}{\sqrt{1 - \xi}}$
$d_3 = \sqrt{1 - \xi}$	$d_3 = \frac{1 - 2\xi}{\sqrt{1 - \xi}}$

Kaplan, Georgi Agashe, Contino, Pomarol, Da Rold

NLO-Lagrangian

(extended Apelquist-Longhitano to include the h)

$$\begin{split} \mathscr{L}_{\chi=4}^{h} &= -\frac{g_{s}^{2}}{4} G_{\mu\nu}^{a} G_{a}^{\mu\nu} \mathcal{F}_{G}(h) - \frac{g^{2}}{4} W_{\mu\nu}^{a} W_{a}^{\mu\nu} \mathcal{F}_{W}(h) - \frac{g'^{2}}{4} B_{\mu\nu} B^{\mu\nu} \mathcal{F}_{B}(h) + \\ &+ \xi \sum_{i=1}^{5} c_{i} \mathcal{P}_{i}(h) + \xi^{2} \sum_{i=6}^{20} c_{i} \mathcal{P}_{i}(h) + \xi^{3} \sum_{i=21}^{23} c_{i} \mathcal{P}_{i}(h) + \xi^{4} c_{24} \mathcal{P}_{24}(h) \,, \end{split}$$

$$\mathcal{P}_{1}(h) = g g' B_{\mu\nu} \operatorname{Tr} (\mathbf{T} W^{\mu\nu}) \mathcal{F}_{1}(h)
\mathcal{P}_{2}(h) = i g' B_{\mu\nu} \operatorname{Tr} (\mathbf{T} [\mathbf{V}^{\mu}, \mathbf{V}^{\nu}]) \mathcal{F}_{2}(h)
\mathcal{P}_{3}(h) = i g \operatorname{Tr} (W_{\mu\nu} [\mathbf{V}^{\mu}, \mathbf{V}^{\nu}]) \mathcal{F}_{3}(h)
\mathcal{P}_{4}(h) = i g' B_{\mu\nu} \operatorname{Tr} (\mathbf{T} \mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{4}(h)
\mathcal{P}_{5}(h) = i g \operatorname{Tr} (W_{\mu\nu} \mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{5}(h)
\mathcal{P}_{6}(h) = (\operatorname{Tr} (\mathbf{V}_{\mu} \mathbf{V}^{\mu}))^{2} \mathcal{F}_{6}(h)
\mathcal{P}_{7}(h) = (\operatorname{Tr} (\mathbf{V}_{\mu} \mathbf{V}^{\nu}))^{2} \mathcal{F}_{7}(h)
\mathcal{P}_{8}(h) = g^{2} (\operatorname{Tr} (\mathbf{T} W^{\mu\nu}))^{2} \mathcal{F}_{8}(h)
\mathcal{P}_{9}(h) = i g \operatorname{Tr} (\mathbf{T} W_{\mu\nu}) \operatorname{Tr} (\mathbf{T} [\mathbf{V}^{\mu}, \mathbf{V}^{\nu}]) \mathcal{F}_{9}(h)
\mathcal{P}_{10}(h) = g \epsilon^{\mu\nu\rho\lambda} \operatorname{Tr} (\mathbf{T} \mathbf{V}_{\mu}) \operatorname{Tr} (\mathbf{V}_{\nu} W_{\rho\lambda}) \mathcal{F}_{10}(h)
\mathcal{P}_{11}(h) = \operatorname{Tr} ((\mathcal{D}_{\mu} \mathbf{V}^{\mu})^{2}) \mathcal{F}_{11}(h)
\mathcal{P}_{12}(h) = \operatorname{Tr} (\mathbf{T} \mathcal{D}_{\mu} \mathbf{V}^{\mu}) \operatorname{Tr} (\mathbf{T} \mathcal{D}_{\nu} \mathbf{V}^{\nu}) \mathcal{F}_{12}(h)$$

$$\begin{split} \mathcal{P}_{13}(h) &= \operatorname{Tr}([\mathbf{T}, \mathbf{V}_{\nu}] \, \mathcal{D}_{\mu} \mathbf{V}^{\mu}) \operatorname{Tr}(\mathbf{T} \mathbf{V}^{\nu}) \mathcal{F}_{13}(h) \\ \mathcal{P}_{14}(h) &= i \, g \, \operatorname{Tr}(\mathbf{T} \mathbf{W}_{\mu\nu}) \operatorname{Tr}(\mathbf{T} \mathbf{V}^{\mu}) \, \partial^{\nu} \mathcal{F}_{14}(h) \\ \mathcal{P}_{15}(h) &= \operatorname{Tr}(\mathbf{T} [\mathbf{V}_{\mu}, \mathbf{V}_{\nu}]) \operatorname{Tr}(\mathbf{T} \mathbf{V}^{\mu}) \, \partial^{\nu} \mathcal{F}_{15}(h) \\ \mathcal{P}_{16}(h) &= \operatorname{Tr}(\mathbf{V}_{\nu} \, \mathcal{D}_{\mu} \mathbf{V}^{\mu}) \, \partial^{\nu} \mathcal{F}_{16}(h) \\ \mathcal{P}_{17}(h) &= \operatorname{Tr}(\mathbf{T} \, \mathcal{D}_{\mu} \mathbf{V}^{\mu}) \operatorname{Tr}(\mathbf{T} \mathbf{V}_{\nu}) \, \partial^{\nu} \mathcal{F}_{17}(h) \\ \mathcal{P}_{18}(h) &= \operatorname{Tr}(\mathbf{V}_{\mu} \, \mathbf{V}^{\mu}) \, \partial_{\nu} \partial^{\nu} \mathcal{F}_{18}(h) \\ \mathcal{P}_{19}(h) &= \operatorname{Tr}(\mathbf{V}_{\mu} \, \mathbf{V}^{\nu}) \, \partial^{\mu} \mathcal{F}_{19}(h) \partial^{\nu} \mathcal{F}_{19}^{\prime}(h) \, \mathbf{I} \\ \mathcal{P}_{20}(h) &= \operatorname{Tr}(\mathbf{T} \mathbf{V}_{\mu}) \operatorname{Tr}(\mathbf{T} \mathbf{V}_{\nu}) \, \partial^{\mu} \mathcal{F}_{20}(h) \partial^{\nu} \mathcal{F}_{20}^{\prime}(h) \\ \mathcal{P}_{21}(h) &= \operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}^{\mu}) (\operatorname{Tr}(\mathbf{T} \mathbf{V}_{\nu}))^{2} \, \mathcal{F}_{21}(h) \\ \mathcal{P}_{22}(h) &= \operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}_{\nu}) \operatorname{Tr}(\mathbf{T} \mathbf{V}^{\mu}) \operatorname{Tr}(\mathbf{T} \mathbf{V}^{\nu}) \mathcal{F}_{22}(h) \\ \mathcal{P}_{23}(h) &= (\operatorname{Tr}(\mathbf{T} \, \mathbf{V}_{\mu}))^{2} \, \partial_{\nu} \partial^{\nu} \mathcal{F}_{23}(h) \\ \mathcal{P}_{24}(h) &= (\operatorname{Tr}(\mathbf{T} \mathbf{V}_{\mu})) \operatorname{Tr}(\mathbf{T} \mathbf{V}_{\nu}))^{2} \, \mathcal{F}_{24}(h) \, . \end{split}$$

Alonso, Gavela, Merlo, Rigolin and Yepes

Restricting anomalous couplings

Primary bosonic

$$\frac{\Gamma_{WW^{(\star)}}}{\Gamma_{WW^{(\star)}}^{SM}} \ = \ \kappa_W^2$$

$$\frac{\Gamma_{ZZ^{(*)}}}{\Gamma_{ZZ^{(*)}}^{SM}} = \kappa_Z^2$$

Primary fermionic

$$\frac{\sigma_{t\overline{t}\,H}}{\sigma_{t\overline{t}\,H}^{SM}} \ = \ \kappa_t^2$$

$$\frac{\Gamma_{b\overline{b}}}{\Gamma_{b\overline{b}}^{SM}} \ = \ \kappa_b^2$$

$$\frac{\Gamma_{\tau^-\tau^+}}{\Gamma^{\text{SM}}_{\tau^-\tau^+}} \ = \ \kappa^2_{\tau}$$

Secondary bosonic

$$\frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma}^{SM}} = \begin{cases} \kappa_{\gamma}^{2}(\kappa_{b}, \kappa_{t}, \kappa_{\tau}, \kappa_{W}, m_{H}) \\ \kappa_{\gamma}^{2} \end{cases}$$

$$\frac{\sigma_{
m ggH}}{\sigma_{
m ggH}^{
m SM}} = \begin{cases} \kappa_{
m g}^2(\kappa_{
m b}, \kappa_{
m t}, m_{
m H}) \\ \kappa_{
m g}^2 \end{cases}$$

$$\kappa_{W}^{2} = (1.6 \kappa_{W}^{2} + 0.07 \kappa_{t}^{2} - 0.67 \kappa_{W} \kappa_{t})$$

LO ECLh (2 derivatives)

$$\mathcal{L}_{2} = -\frac{1}{2g^{2}} \text{Tr}(\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}) - \frac{1}{2g^{'2}} \text{Tr}(\hat{B}_{\mu\nu}\hat{B}^{\mu\nu}) + \frac{v^{2}}{4} \left[1 + 2a\frac{h}{v} + b\frac{h^{2}}{v^{2}} \right] \text{Tr}(D^{\mu}U^{\dagger}D_{\mu}U) + \frac{1}{2}\partial^{\mu}h\,\partial_{\mu}h + \dots$$

NLO ECLh (4 derivatives)

Apelquist-Longhitano

$$a_1 \text{Tr}(U \hat{B}_{\mu\nu} U^{\dagger} \hat{W}^{\mu\nu}) + i a_2 \text{Tr}(U \hat{B}_{\mu\nu} U^{\dagger} [V^{\mu}, V^{\nu}]) - i a_3 \text{Tr}(\hat{W}_{\mu\nu} [V^{\mu}, V^{\nu}]) + a_4 \left[\text{Tr}(V_{\mu} V_{\nu}) \right] \left[\text{Tr}(V^{\mu} V^{\nu}) \right] + a_5 \left[\text{Tr}(V_{\mu} V^{\mu}) \right] \left[\text{Tr}(V_{\nu} V^{\nu}) \right] + \dots ,$$

Additional terms including h and its derivatives (4 operators more)

One loop LO and NLO are the same order

It is not consistent to use the NLO ECLh without LO one-loop corrections!

NLO Effective Lagrangian

for $W_L W_L$, $Z_L Z_L$ and hh one-loop scattering

$$M_W^2, M_Z^2, M_h^2 << s << \Lambda^2$$

$$g = g' = H_{YK} = 0$$

$$\mathcal{L} = \frac{1}{2} \left(1 + 2a \frac{h}{v} + b \left(\frac{h}{v} \right)^2 \right) \partial_{\mu} \omega^a \partial^{\mu} \omega^b \left(\delta_{ab} + \frac{\omega^a \omega^b}{v^2} \right) + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h$$

$$+ \frac{4a_4}{v^4} \partial_{\mu} \omega^a \partial_{\nu} \omega^a \partial^{\mu} \omega^b \partial^{\nu} \omega^b + \frac{4a_5}{v^4} \partial_{\mu} \omega^a \partial^{\mu} \omega^a \partial_{\nu} \omega^b \partial^{\nu} \omega^b + \frac{\gamma}{f^4} (\partial_{\mu} h \partial^{\mu} h)^2$$

$$+ \frac{2\delta}{v^2 f^2} \partial_{\mu} h \partial^{\mu} h \partial_{\nu} \omega^a \partial^{\nu} \omega^a + \frac{2\eta}{v^2 f^2} \partial_{\mu} h \partial^{\nu} h \partial^{\mu} \omega^a \partial_{\nu} \omega^a.$$

$$U(x) = \sqrt{1 - \frac{\omega^2}{v^2}} + i\frac{\tilde{\omega}}{v}$$

Unitarity is simplest for partial waves: $ImF(s) = F(s)F^{\dagger}(s)$

$$\omega \omega \longrightarrow \omega \omega$$

$$A_{IJ}(s) = A_{IJ}^{(0)}(s) + A_{IJ}^{(1)}(s) + ...,$$

$$A_{IJ}^{(0)}(s) = Ks$$

$$A_{IJ}^{(1)}(s) = s^2 \left(B(\mu) + D \log \frac{s}{\mu^2} + E \log \frac{-s}{\mu^2} \right)$$

$$\omega \omega \longrightarrow h h$$

$$h h \longrightarrow h h$$

$$\stackrel{=0}{\longrightarrow}$$
 $hh \longrightarrow hh$

$$A_0(s, t, u) = 3A(s, t, u) + A(t, s, u) + A(u, t, s)$$

$$A_1(s,t,u) = A(t,s,u) - A(u,t,s)$$

$$A_2(s, t, u) = A(t, s, u) + A(u, t, s)$$
.

$$A_{IJ}(s) = \frac{1}{64 \pi} \int_{-1}^{1} d(\cos \theta) P_J(\cos \theta) A_I(s, t, u)$$

$$M_J(s) = K's + s^2 \left(B'(\mu) + D' \log \frac{s}{\mu^2} + E' \log \frac{-s}{\mu^2} \right) \dots$$
$$T_J(s) = K''s + s^2 \left(B''(\mu) + D'' \log \frac{s}{\mu^2} + E'' \log \frac{-s}{\mu^2} \right) \dots$$

$$F_{00}(s) = F_{00}(s) =$$

$$F_{00}(s) = \begin{pmatrix} A_{00}(s) & M_0(s) \\ M_0(s) & T_0(s) \end{pmatrix} \qquad F_{02}(s) = \begin{pmatrix} A_{02}(s) & M_2(s) \\ M_2(s) & T_2(s) \end{pmatrix}$$

$$I = 0$$
 $F_{IJ} = F_{IJ}^{(0)} + F_{IJ}^{(1)} + \dots$

 $I \neq 0$

$$F_{IJ}(s) = A_{IJ}(s)$$

$$ImF_{IJ}^{(1)} = F_{IJ}^{(0)}F_{IJ}^{(0)}$$

$${\rm Im}\, A_{IJ}^{(1)} = |A_{IJ}^{(0)}|^2 \quad I \neq 0$$

$$\operatorname{Im} A_{0J}^{(1)} = |A_{0J}^{(0)}|^2 + |M_J^{(0)}|^2$$

$$\operatorname{Im} M_J^{(1)} = A_{0J}^{(0)} M_J^{(0)} + M_J^{(0)} T_J^{(0)}$$

$$\operatorname{Im} T_J^{(1)} = |M_J^{(0)}|^2 + |T_J^{(0)}|^2.$$

$$|A_{IJ}|^2 \leq 1$$

Constants to reconstruct partial waves with I=J=0

$$K_{00} = \frac{1}{16\pi v^2} (1 - a^2)$$

$$B_{00}(\mu) = \frac{1}{9216\pi^3 v^4} [101(1 - a^2)^2 + 68(a^2 - b)^2 + 768(7a_4(\mu) + 11a_5(\mu))\pi^2]$$

$$D_{00} = -\frac{1}{4608\pi^3 v^4} [7(1 - a^2)^2 + 3(a^2 - b)^2]$$

$$E_{00} = -\frac{1}{64\pi^3 v^4} [4(1 - a^2)^2 + 3(a^2 - b)^2] .$$

$$\omega_a \omega_b \to \omega_c \omega_d$$

$$K'_0 = \frac{\sqrt{3}}{32\pi v^2}(a^2 - b)$$

$$B'_0(\mu) = \frac{\sqrt{3}}{16\pi v^4} \left(\delta(\mu) + \frac{\eta(\mu)}{3}\right) + \frac{\sqrt{3}}{18432\pi^3 v^4}(a^2 - b)[72(1 - a^2) + (a^2 - b)]$$

$$D'_0 = -\frac{\sqrt{3}(a^2 - b)^2}{9216\pi^3 v^4}$$

$$E'_0 = -\frac{\sqrt{3}(a^2 - b)(1 - a^2)}{512\pi^3 v^4}$$

$$\omega\omega \to hh$$

$$K_2' = 0$$

$$B_2'(\mu) = \frac{\eta(\mu)}{160\sqrt{3}\pi v^4} + \frac{83(a^2 - b)^2}{307200\sqrt{3}\pi^3 v^4}$$

$$D_2' = -\frac{(a^2 - b)^2}{7680\sqrt{3}\pi^3 v^4}$$

$$E_2' = 0.$$

 $hh \rightarrow hh$

JHEP 1402 (2014) 121

The Inverse Amplitude Method

Dobado, Herrero, Truong, Pelaez...

$$A(s) = A^{NLO}(s) + O(s^3)$$

$$I \neq 0$$

$$A^{NLO}(s) = A^{(0)}(s) + A^{(1)}(s)$$

$$A^{(0)}(s) = Ks$$

$$A^{(1)}(s) = s^2 \left(B(\mu) + D \log \frac{s}{\mu^2} + E \log \frac{-s}{\mu^2} \right)$$

 $B(\mu) = B(\mu_0) + (D+E)\log\frac{\mu^2}{\mu^2}$

$${\rm Im}\,A^{(1)}=(A^{(0)})^2$$

$$K^2 = -E\pi$$

$$f(s) = \frac{A^{NLO}(s) - A^{(0)}(s)}{s^2}$$

$$f(s) = \frac{A^{NLO}(s) - A^{(0)}(s)}{s^2} \qquad f(s) = \frac{1}{\pi} \int_0^{\Lambda^2} \frac{ds' \operatorname{Im} f(s')}{s' - s - i\epsilon} + \frac{1}{\pi} \int_{-\Lambda^2}^0 \frac{ds' \operatorname{Im} f(s')}{s' - s - i\epsilon} + \frac{1}{2\pi i} \int_{C_{\infty}} \frac{ds' f(s')}{s' - s} ds' \frac{ds' f(s')}{s' - s - i\epsilon} ds' \frac{ds'$$

$$A^{NLO}(s) = Ks + \frac{s^2}{\pi} \int_0^{\Lambda^2} \frac{ds' \operatorname{Im} A^{NLO}(s')}{s'^2(s'-s-i\epsilon)} + \frac{s^2}{\pi} \int_{-\Lambda^2}^0 \frac{ds' \operatorname{Im} A^{NLO}(s')}{s'^2(s'-s-i\epsilon)} + \frac{s^2}{2\pi i} \int_{C_\infty} \frac{ds' A^{NLO}(s')}{s'^2(s'-s)}.$$

$$A^{NLO}(s) = Ks + s^2(B(\mu) + D\log\frac{s}{\mu^2} + E\log\frac{-s}{\mu^2})$$

$$g(s) = \frac{(A^{(0)}(s))^2}{A(s)}$$

Inverse Amplitude

$$g(s) = Ks + \frac{s^2}{\pi} \int_0^{\Lambda^2} \frac{ds' \operatorname{Im} g(s')}{s'^2(s'-s-i\epsilon)} + \frac{s^2}{\pi} \int_{-\Lambda^2}^0 \frac{ds' \operatorname{Im} g(s')}{s'^2(s'-s-i\epsilon)} + \frac{s^2}{2\pi i} \int_{C_\infty} \frac{ds' g(s')}{s'^2(s'-s)}$$

$$RC \qquad Im G = -K^2 s^2$$

 $\operatorname{LC} = \operatorname{Im} G \simeq -\operatorname{Im} A^{(1)}$

$$g(s) \simeq Ks - Ds^2 \log \frac{s}{\Lambda^2} - Es^2 \log \frac{-s}{\Lambda^2} + \frac{s^2}{2\pi i} \int_{C_{\infty}} \frac{ds' g(s')}{s'^2 (s' - s)} \cdot A_{IJ}^{IAM}(s) = \frac{(A_{IJ}^{(0)}(s))^2}{A_{IJ}^{(0)}(s) - A_{IJ}^{(1)}(s)}$$

$$A_{IJ}^{IAM}(s) = \frac{(A_{IJ}^{(0)}(s))^2}{A_{IJ}^{(0)}(s) - A_{IJ}^{(1)}(s)}$$

$$\operatorname{Im} A_{IJ}^{IAM} = A_{IJ}^{IAM} (A_{IJ}^{IAM})^*$$

$$\operatorname{Im} A_{IJ}^{IAM} = A_{IJ}^{IAM} (A_{IJ}^{IAM})^* \qquad A^{IAM}(s) = A^{NLO}(s) + O(s)$$

The IAM method produces:

Unitary amplitudes equal to NLO EFT at low energy; the proper analytical structure which can have poles in the second Riemann sheet reproducing new resonances. Extension to coupled channels for massless particles:

$$F_{IJ}^{IAM} = F_{IJ}^{(0)} (F_{IJ}^{(0)} - F_{IJ}^{(1)})^{-1} F_{IJ}^{(0)} \quad \text{Im } F_{IJ}^{IAM} = F_{IJ}^{IAM} (F_{IJ}^{IAM})^{\dagger}$$

$$\operatorname{Im} F_{IJ}^{IAM} = F_{IJ}^{IAM} (F_{IJ}^{IAM})^{\dagger}$$

Dependence on the unitarization method

$$A^{\text{IAM}}(s) = \frac{[A^{(0)}(s)]^{2}}{A^{(0)}(s) - A^{(1)}(s)}$$

$$= \frac{A^{(0)}(s) + A_{L}(s)}{1 - \frac{A_{R}(s)}{A^{(0)}(s)} - (\frac{A_{L}(s)}{A^{(0)}(s)})^{2} + g(s)A_{L}(s)}$$

$$A^{\text{N/D}}(s) = \frac{A^{(0)}(s) + A_{L}(s)}{1 - \frac{A_{R}(s)}{A^{(0)}(s)} + \frac{1}{2}g(s)A_{L}(-s)}$$

$$A^{\text{IK}}(s) = \frac{A^{(0)}(s) + A_{L}(s)}{1 - \frac{A_{R}(s)}{A^{(0)}(s)} + g(s)A_{L}(s)}.$$

The formulae differ only if A_{τ} (left cut contribution) is large

Position of pinball resonance in complex plane

$$\sqrt{s_0} = M - i\Gamma/2$$

SO(5)/SO(4)

$$= v^2/f^2$$
 $a = \sqrt{1-\xi} \text{ and } b = 1-2\xi$

$$b \in (-1,3)$$

First bound on this EFT parameter known to us

Wrapping up $V_{\tau}V_{\tau}$ scattering:

$$a^2 = b$$

$$a^2 \neq 1$$

 $a^2 = b$ $a^2 \neq 1$ Strong, elastic

$$a^2 \neq b$$

$$a^2 = 1$$

 $a^2 \neq b$ $a^2 = 1$ Strong, resonating through hh

$$a^2 \neq b$$

$$a^2 \neq 1$$

 $a^2 \neq b$ Both elastic, resonating are strong

$$a^2 = b$$

$$a^2 = 1$$

 $a^2 = b$ $a^2 = 1$ Weak, elastic (SM)

2014 95% CL

Our result

$$a \simeq \kappa_V \in [0.7, 1.3]$$

CMS
$$a \simeq \kappa_V \in [0.7, 1.3]$$
 ATLAS $a \simeq \kappa_V \in [0.8, 1.4]$ $b \in (-1, 3)$

$$b \in (-1, 3)$$

Counting for EWSBS + $\gamma\gamma$ or tt

Minimum truth in it: global $SU(2) \times SU(2) \rightarrow SU(2)$

SMEFT (linear representation)

 ω a and h form a left SU(2) doublet

Always the combination (h + v)

Higher symmetry

Typical situation when h is a fundamental field

EFT based in counting dimensions: $O(d)/\Lambda^{d-4}$ (d=4,6,8...)

Philosophy: the SM is basically true, extend it

Minimum truth in it: global $SU(2) \times SU(2) \rightarrow SU(2)$

HEFT (nonlinear representation)

h is a custodial SU(2) singlet; ω^a parametrize coset

(think of π^a and η wrt isospin in hadron physics)

$$SU(2)_L \times SU(2)_R / SU(2)_C = SU(2) \simeq S^3$$

Less symmetry; more independent higher dim. eff. operators

Derivative expansion → strongly interacting

Appropriate for composite models of the SBS (h as a GB)

Philosophy: agnostic respect to SM

Differences in counting

SMEFT:
count
canonical
dimensions
indep. Of
how many
loops to
yield operator

Buchalla, Catà... e.g. 1512.07140v1

HEFT: count loops (chiral dimension) indep. of number of bosons

High-mass particles contribution to LECs

Typically $a_i = (number) \times C^2 / M^2 \sim \Gamma / M^2$ (see tables in A.Pich et al. 1609.06659)

An interesting exercise (1509.01585)

Resonance \rightarrow Integrate out \rightarrow LEC \rightarrow IAM \rightarrow Predict resonance

(mass, J,P ok; Γ somewhat overestimated)

EM production of EWSBS at the LHC

Photon flows

$\gamma\gamma \longleftrightarrow Z_{L}Z_{L}$, $W_{L}W_{L}$, hh at one-loop

Interesting for new physics: no Higgs contribution at tree level; In particular the neutral channel vanishes in the MSM JHEP 1407 (2014) 149.

$$\mathcal{M} = ie^2(\epsilon_1^{\mu} \epsilon_2^{\nu} T_{\mu\nu}^{(1)}) A(s,t,u) + ie^2(\epsilon_1^{\mu} \epsilon_2^{\nu} T_{\mu\nu}^{(2)}) B(s,t,u)$$

$$\begin{array}{lcl} (\epsilon_{1}^{\mu}\epsilon_{2}^{\nu}T_{\mu\nu}^{(1)}) & = & \frac{s}{2}(\epsilon_{1}\epsilon_{2}) - (\epsilon_{1}k_{2})(\epsilon_{2}k_{1}), \\ (\epsilon_{1}^{\mu}\epsilon_{2}^{\nu}T_{\mu\nu}^{(2)}) & = & 2s(\epsilon_{1}\Delta)(\epsilon_{2}\Delta) - (t-u)^{2}(\epsilon_{1}\epsilon_{2}) - 2(t-u)[(\epsilon_{1}\Delta)(\epsilon_{2}k_{1}) - (\epsilon_{1}k_{2})(\epsilon_{2}\Delta)] \\ \end{array}$$

$$\mathcal{M} = \mathcal{M}_{\mathrm{LO}} + \mathcal{M}_{\mathrm{NLO}},$$

$$-\frac{c_{\gamma}}{2}\frac{h}{v}e^2A_{\mu\nu}A^{\mu\nu}$$

$$A = A_{LO} + A_{NLO}$$

$$\Delta^{\mu} \equiv p_1^{\mu} - p_2^{\mu}$$

$$\mathcal{M}_{ ext{NLO}} = \mathcal{M}_{\mathcal{O}(e^2p^2)}^{1- ext{loop}} + \mathcal{M}_{\mathcal{O}(e^2p^2)}^{ ext{tree}}$$

$$B = B_{\rm LO} + B_{\rm NLO}$$

$$\gamma\gamma \to zz$$

$$\mathcal{M}(\gamma\gamma \to zz)_{\mathrm{LO}} = 0$$

$$A(\gamma\gamma \to zz)_{\text{NLO}} = \frac{2ac_{\gamma}^{r}}{v^{2}} + \frac{(a^{2} - 1)}{4\pi^{2}v^{2}}$$
$$B(\gamma\gamma \to zz)_{\text{NLO}} = 0,$$

$$c_{\gamma}^{r} = c_{\gamma}$$

$\gamma\gamma \rightarrow w^+w^-$

$$A(\gamma\gamma \to w^+w^-)_{\mathrm{LO}} = 2sB(\gamma\gamma \to w^+w^-)_{\mathrm{LO}} = -\frac{1}{t} - \frac{1}{u}$$

$$A(\gamma\gamma \to w^+w^-)_{\mathrm{LO}} = 2sB(\gamma\gamma \to w^+w^-)_{\mathrm{LO}} = -\frac{1}{t} - \frac{1}{u}$$

$$A(\gamma\gamma \to w^+w^-)_{\text{NLO}} = \frac{8(a_1^r - a_2^r + a_3^r)}{v^2} + \frac{2ac_{\gamma}^r}{v^2} + \frac{(a^2 - 1)}{8\pi^2v^2}$$
$$B(\gamma\gamma \to w^+w^-)_{\text{NLO}} = 0.$$

$$(a_1^r - a_2^r + a_3^r) = (a_1 - a_2 + a_3)$$
 $c_{\gamma}^r = c_{\gamma}$

Finite one-loop result! No renormalization needed Now unitarized too: Eur.Phys.J. C77 (2017) 205

Topantitop

Top-antitop production

* Because the top has the largest fermion mass, its coupling to the EWSBS is largest among fermions

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \left(1 + c_1 \frac{h}{v} + c_2 \frac{h^2}{v^2} \right) \left\{ \left(1 - \frac{\omega^2}{2v^2} \right) M_t t \bar{t} + \frac{i\sqrt{2}\omega^0}{v} M_t \bar{t} \gamma^5 t - i\sqrt{2} \frac{\omega^+}{v} M_t \bar{t}_R b_L + i\sqrt{2} \frac{\omega^-}{v} M_t \bar{b}_L t_R \right\} \\
+ \frac{1}{2} \left(1 + 2a \frac{h}{v} + b \left(\frac{h}{v} \right)^2 \right) \partial_{\mu} \omega^i \partial^{\mu} \omega_j \left(\delta_{ij} + \frac{\omega_i \omega_j}{v^2} \right).$$

(We maintain Yukawa structure bc of B-factories success)

1607.01158

$$\mathcal{L}_{4} = \frac{4a_{4}}{v^{4}} \partial_{\mu} \omega^{i} \partial_{\nu} \omega^{i} \partial^{\mu} \omega^{j} \partial^{\nu} \omega^{j} + \frac{4a_{5}}{v^{4}} \partial_{\mu} \omega^{i} \partial^{\mu} \omega^{i} \partial_{\nu} \omega^{j} \partial^{\nu} \omega^{j}
+ \frac{2d}{v^{4}} \partial_{\mu} h \partial^{\mu} h \partial_{\nu} \omega^{i} \partial^{\nu} \omega^{i} + \frac{2e}{v^{4}} \partial_{\mu} h \partial^{\nu} h \partial^{\mu} \omega^{i} \partial_{\nu} \omega^{i}
+ \frac{g}{v^{4}} (\partial_{\mu} h \partial^{\mu} h)^{2}
+ g_{t} \frac{M_{t}}{v^{4}} (\partial_{\mu} \omega^{i} \partial^{\mu} \omega^{j}) t\bar{t} + g'_{t} \frac{M_{t}}{v^{4}} (\partial_{\mu} h \partial^{\mu} h) t\bar{t}.$$
(16)

