High energy nuclear physics at the LHC

Antoine Lardeux Ionut Arsene University of Oslo 2017/04/05

Contents

- Introduction
- The ALICE detector
- Physics results

Introduction

What are ultra-relativistic heavy-ion collisions?

Collisions of (heavy) nuclei at energies much higher than nucleon mass

Heavy ion accelerators

- > Past:
 - > Bevalac @ LBL, Berkeley (1980-1990): √s_{NN}=2.4 GeV
 - > AGS @ BNL, Brookhaven (1985-1995): $\sqrt{s_{NN}}$ =4.8 GeV
 - SPS @ CERN, Geneva (1987-2004): √s_{NN}=17.3 GeV
- Present:
 - > SIS @ GSI, Darmstadt: $\sqrt{s_{NN}}=2.5 \text{ GeV}$
 - > RHIC @ BNL, Brookhaven: $√s_{NN}$ =200 GeV
 - > LHC @ CERN, Geneva: $\sqrt{s_{NN}}$ =2760, 5020 GeV
- Future:
 - > FAIR @ GSI, Darmstadt (~2020): $\sqrt{s_{NN}}$ =5 GeV

a large variety (Z=1-118, A=2-294), sizes: ~10⁻¹⁴ m nucleons are bound by about 1% of their mass ($m_p \approx m_n = 1.7 \times 10^{-27}$ kg)

a large variety (Z=1-118, A=2-294), sizes: ~10⁻¹⁴ m nucleons are bound by about 1% of their mass ($m_p \approx m_n = 1.7 \times 10^{-27}$ kg)

Hadrons

baryons (p,n,...), mesons (π, K, ...), sizes: 10⁻¹⁵ m

a large variety (Z=1-118, A=2-294), sizes: ~10⁻¹⁴ m nucleons are bound by about 1% of their mass ($m_p \approx m_n = 1.7 \times 10^{-27}$ kg)

Hadrons

```
baryons (p,n,...), mesons (π, K, ...), sizes: 10<sup>-15</sup> m
```

<u>Quarks</u>

6 flavours (light: u,d; "intermediate": s; heavy: c,b; "super-heavy": t) each in 3 "colours" (to build colourless hadrons: qqq, \overline{qqq} , $q\overline{q}$, ...) sizes: point-like (<10⁻¹⁹ m)

a large variety (Z=1-118, A=2-294), sizes: ~10⁻¹⁴ m nucleons are bound by about 1% of their mass ($m_p \approx m_n = 1.7 \times 10^{-27}$ kg)

Hadrons

```
baryons (p,n,...), mesons (\pi, K, ...), sizes: 10<sup>-15</sup> m
```

<u>Quarks</u>

6 flavours (light: u,d; "intermediate": s; heavy: c,b; "super-heavy": t) each in 3 "colours" (to build colourless hadrons: qqq, \overline{qqq} , $q\overline{q}$, ...) sizes: point-like (<10⁻¹⁹ m)

- … all governed by the strong interaction
- Gravitation is negligible
- (electro)weak interactions act only indirectly (decays, final state interactions)

Quantum Chromo-Dynamics (QCD)

 6 quarks, 3 colours (RGB) and 8 gluons (coloured!)

$$L_{QCD} = \overline{\psi_i} \left(i \left(\gamma^{\mu} D_{\mu} \right)_{ij} - m \delta_{ij} \right) \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

- ...difficult to calculate
 - No analytical solutions (except 1+1)

Quantum Chromo-Dynamics (QCD)

S.Bethke, arXiv:1210.0325

Quantum Chromo-Dynamics (QCD)

- 6 quarks, 3 colours (RGB) and 8 gluons (coloured!)
- ...difficult to calculate
 - No analytical solutions (except 1+1)
- Low Q: confinement / chiral symmetry breaking Physics Nobel Prize 2008 (Y.Nambu)
 - Non-perturbative, largely unknown
 - One of the millenium problems
 - Most of the visible matter in the Universe

 Create in the laboratory a chunk of deconfined matter (also called Quark-Gluon Plasma, QGP / sQGP) and study its properties and phase diagram

- Create in the laboratory a chunk of deconfined matter (also called Quark-Gluon Plasma, QGP / sQGP) and study its properties and phase diagram
- Relevance for:
 - Completeness of QCD studies (low-Q, finite T and µ)
 Phase diagram of nuclear matter:
 - Chiral / deconfinement phase transitions

- Create in the laboratory a chunk of deconfined matter (also called Quark-Gluon Plasma, QGP / sQGP) and study its properties and phase diagram
- Relevance for:
 - Completeness of QCD studies (low-Q, finite T and µ)
 Phase diagram of nuclear matter:
 - Chiral / deconfinement phase transition
 - Lattice QCD calculations conclude transition is cross-over type (Y.Aoki et al., Nature 443 (2006) 675)
 - → "Critical" temperature: $T_c \approx 155-160$ MeV

(A.Bazavov et al., arXiv:1111.1710, S.Borsanyi et al., arXiv:1005.3508)

F. Karsch, hep-lat/0106019

- Create in the laboratory a chunk of deconfined matter (also called Quark-Gluon Plasma, QGP / sQGP) and study its properties and phase diagram
- Relevance for:
 - Completeness of QCD studies
 - Cosmology: access
 early Universe conditions (10⁻⁵ s)

Cosmic microwave background seen by Planck

- Create in the laboratory a chunk of deconfined matter (also called Quark-Gluon Plasma, QGP / sQGP) and study its properties and phase diagram
- Relevance for:
 - Completeness of QCD studies
 - Cosmology
 - Astrophysics: neutron stars mass controlled by the equation of state (EoS) of nuclear matter
 - "Canonical" mass: 1.4 M_{sun}
 - How can the outliers exist ?
 - Stiffer EoS at larger nuclear densities

J.M.Lattimer, arXiv:1305.3510

- Create in the laboratory a chunk of deconfined matter (also called Quark-Gluon Plasma, QGP / sQGP) and study its properties and phase diagram
- Relevance for:
 - Completeness of QCD studies
 - Cosmology
 - Astrophysics
 - Solid state physics:
 Chiral magnetic effect first studied in HIC, now discovered in condensed matter experiments

Chiral Magnetic Effect Generates Quantum Current Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity

February 8, 2016

Nuclear theorist Dmitri Kharzeev of Stony Brook University and Brookhaven Lab with Brookhaven Lab + ENLARGE + ENLARGE + ENLARGE + ENLARGE of zirconium pentatelluride.

Q.Li, D.Kharzeev et al., Nature Physics Letters (in press)

- Create in the laboratory a chunk of deconfined matter (also called Quark-Gluon Plasma, QGP / sQGP) and study its properties and phase diagram
- Relevance for:
 - Completeness of QCD studies
 - Cosmology
 - Astrophysics
 - Solid state physics
- Because quarks cannot be observed as free, the deconfined state can only be detected via the fingerprints it leaves on "normal" nuclear matter (hadrons) ...extremely challenging

Initial state

0 0

- Highly Lorentz contracted nuclei
- Initial state extremely important
 - > Gluon shadowing ?
 - Color Glass Condensate ?

Initial state

0 0

- > Highly Lorentz contracted nuclei
- Initial state extremely important
 - Gluon shadowing ?
 - Color Glass Condensate ?

 Crucial for disentangling the so called "cold nuclear matter" (CNM) effects from genuine hot medium effects

0	10 ⁻²⁶ -10 ⁻²⁴	
0	0.01 - 1	

- Initial hard collisions take place
- Most of the entropy is created now
- > Equilibrium (thermalization) takes place rapidly

0	10 ⁻²⁶ -10 ⁻²⁴	10 ⁻²⁴ -10 ⁻²³
0	0.01-1	1-10

t (s) (fm/c)

- > Deconfined Quark-Gluon Plasma phase
- System expands and cools hydrodynamically

0 0.01-1 1-10 ~10

t (s)

(fm/c)

- Hadronization: quarks and gluons form hadrons
- > Non-perturbative process
- Chemical freeze-out: inelastic collisions cease; yields of various particle species are frozen

- Kinetic freeze-out:
 - > Elastic collisions cease
 - Kinetic distributions are frozen
- We measure only at the latest stages but we want to understand the hard partonic and the QGP stages!

What are the conditions that can be achieved?

(extracted from data and models)

- > Temperature: T=100-1000 MeV or up to 1 million times that in the center of the Sun $1 \text{MeV} \approx 10$ billion degrees Kelvin
- > Pressure: P=100-300 MeV/fm³ (1MeV/fm³ ≈ 10²⁸ atmospheres)
 center of the Earth: 3.6*10⁶ atmospheres
- > Density: ρ =1-10 ρ_0 (ρ_0 : density of a Au <u>nucleus</u> = 2.7*10¹⁴ g/cm³) Density of Au = 19 g/cm³
- Volume: about 2000 fm³ (1 fm = 10⁻¹⁵ m)
- Duration: about 10 fm/c (or about 3*10⁻²³ sec.)

What are the "control parameters"

- > Energy of the collision (per nucleon pair $\sqrt{s_{NN}}$)
- ► Centrality of the collision (number of "participating" nucleons, N_{part}) typically measured in percentage of the geometric cross-section ($\sigma_{geom} = \pi (2R)^2$)

N.Herrman, J.P.Wessels, T.Wienold, Ann.Rev.Nucl.part.Sci. 49(1999) 581

The ALICE detector

How to "measure" the early Universe in the lab?

A 3D picture (with 500 million voxels) of a central collision (about 3000 primary tracks)
We take millions of such pictures to be analyzed offline

The ALICE detector

The L3 solenoid magnet

- It creates a uniform 0.5 T magnetic field
- As heavy as the Eiffel tower

The Inner Tracking System (ITS)

- Barrel geometry detector
- Key detector for ALICE trigger system
- Measures global properties of the event: particle multiplicity

Inner Tracking System (ITS)

- 6 layers of silicon detectors with very high spatial resolution
 - Locates the collision vertex and secondary vertices from heavy quark decays

 It also performs particle identification via linear energy loss, but less precise than TPC

The TPC

- > The Time Projection Chamber is the main ALICE detector
- It is the largest TPC in the world
- > 500 Mega-voxel 3D digital camera -> takes ca. 1000 pictures per second

TPC working principle

- > Position measurement :
- Momentum measurement:

$$d = v_{drift} * \Delta t$$
$$p_{\tau} = q * B * r$$

Particle identification with the TPC

Particles are identified using their specific energy loss in the TPC gas volume

> Highest mass anti-nuclei observed with the current data sample: anti-⁴He
The Time-of-Flight detector (TOF)

 $V = L/\Delta t$

- Measures the time of flight between the collision start and arrival at the detector
- In conjunction with the momentum measurement from tracking -> particle identification
- Time resolution: 10⁻¹⁰ s

Particle identification using TOF

Extends the particle identification of the TPC to higher momentum

Other detectors

- ALICE is using a wide range of detector technologies covering a large portion of the available kinematics
- Some of the not mentioned detectors are:
 - Transition Radiation Detector (TRD): electron identification
 - Electromagnetic Calorimeter (EMCAL): electrons and photons
 - Photon Spectrometer (PHOS): electrons and photons
 - Zero Degree Calorimeter (ZDC): spectator neutrons and protons
 - > Muon Spectrometer (MUON): muon reconstruction at forward rapidity
 - VZERO, TZERO: trigger detectors

 \geqslant

. . .

Cerenkov detector (HMPID): hadron identification at high momentum

Physics results

Bulk particle production

ALICE Collaboration, arXiv:1512.06104

- Yield per participant pair is larger in nuclear collisions than in proton-proton collisions:
 - large entropy production
- The difference between nuclear and pp collisions also grows rapidly with energy

Bulk particle production

ALICE Collaboration, arXiv:1512.06104

- Yield per participant pair is larger in nuclear collisions than in proton-proton collisions:
 - large entropy production
- The difference between nuclear and pp collisions also grows rapidly with energy
- Yield per participant pair also grows towards more central collisions

Bulk particle production

ALICE Collaboration, arXiv:1512.06104

- Yield per participant pair is larger in nuclear collisions than in proton-proton collisions:
 - large entropy production
- The difference between nuclear and pp collisions also grows rapidly with energy
- Yield per participant pair also grows towards more central collisions
- These results allow to quantify the initial energy density and set constraints on initial state models, e.g. CGC

Identified hadron yields

- Lots of particles, most newly created (E=mc²)
- A great variety of species: π[±](ud̄,dū), m=140 MeV K[±](us̄,sū), m=494 MeV p(uud), m=938 MeV Λ(uds), m=1116 MeV also: Ξ(dss), Ω(sss), ...
- Abundancies follow mass hierarchy, except at low energies where remnants from the incoming nuclei are significant
- What do we learn?

Chemical freeze-out: hadron yields

Thermal fits of hadron abundancies:

$$n_i = N_i/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 \mathrm{d}p}{\exp[(E_i - \mu_i)/T] \pm 1}$$

- > Quantum numbers conservation $\mu = \mu_B B + \mu_{I3} I_3 + \mu_S S + \mu_C C$
- Hadron yields N_i can be obtained using only 3 parameters: (T_{chem},µ_B,V)
- The hadron abundancies are in agreement with a thermally equilibrated system

T_{chem}=155-165 MeV

Elliptic flow (v_2) . What is that?

$$\frac{dN}{d\phi} \sim \left[1 + 2v_1 \cdot \cos(\phi) + 2v_2 \cdot \cos(2\phi)\right]$$

 $\phi=\mbox{azimuthal}$ angle with respect to reaction plane,

$$v_2 = \langle \cos(2\phi) \rangle$$

0,180°: in-plane, 90,270°: out-of-plane

 Determined by the initial spatial eccentricity, with energy density as weight

...the strongly coupled system transforms it into momentum anisotropy

Elliptic flow in high energy HIC

Luzum & Romatschke, arXiv:0804.4015

- Hydrodynamical models assume local thermal equilibrium
- Treats the whole collision history starting from the moment the system reaches equilibrium
- What do we learn from data?
 Equation of state of the QGP
 Shear viscosity
- Shear viscosity much smaller than for any known substance
- Lower bound conjectured from AdS/CFT: $\eta/s = 1/4\pi \approx 0.08$

Kovtun, Son, Starinets hep-th/0405231

Heavy quarkonium and the QGP

- > What are heavy quarkonia?
 - Bound states of heavy quark antiquark pairs, e.g. ψ (cc) and Y (bb) families
 - Relatively large binding energy, e.g. for J/ψ is ~600 MeV
- Due to their large mass, heavy quarks can be produced only in initial hard partonic collisions and their number is conserved during the collision history
 - Ideal probe for QGP

Heavy quarkonium and the QGP

- The original idea (Matsui and Satz, PLB 178 (1986) 416):
 - In a deconfined medium with high density of color charges, the QCD analogue of the Debye screening can lead to heavy quarkonium suppression
 - > No J/ ψ if $\lambda_D < r_{J/\psi}$

Heavy quarkonium and the QGP

- The original idea (Matsui and Satz, PLB 178 (1986) 416):
 - In a deconfined medium with high density of color charges, the QCD analogue of the Debye screening can lead to heavy quarkonium suppression

> No J/ ψ if $\lambda_D < r_{J/\psi}$

- The Debye length in QGP is a function of temperature so J/ψ and the other quarkonium states are expected to melt at different temperatures:
 - Sequential melting"

Heavy quarkonium in the QGP (re-generation)

- ➤ Melting ↔ formation of quarkonium states Thews et al., PRC 63 (2001) 054905
- > Enhancement of quarkonia states from $Q\overline{Q}$ pairs at the phase boundary
 - Open charm and quarkonia abundancies calculated assuming statistical hadronization.
 - Braun-Munzinger and Stachel, PLB 490 (2000) 196

Medium effects (the nuclear modification factor)

p-Pb, ALICE PRL110(2013)082302 Pb-Pb, ALICE, Phys.Lett.B720 (2013)52 Pb-Pb, CMS, EPJC (2012) 72 γ, CMS, PLB 710 (2012) 256 W[±], CMS, PLB715 (2012) 66 Z⁰, CMS, PRL106 (2011) 212301

- N_{coll}: the number of binary nucleonnucleon collisions
- > Superposition of NN collisions $\rightarrow R_{AA}=1$ Suppression $\rightarrow R_{AA}<1$ Enhancement $\rightarrow R_{AA}>1$
- Weakly interacting particles are not affected by the QGP
 - Photons, W[±] and Z⁰ bosons R_{AA} are compatible with 1

J/ψ suppression in Au-Au collisions at RHIC

- Strong suppression observed in central Au-Au collisions at RHIC energies
- Direct evidence of color screening?
- Not completely clear yet: we still need to take into account feed-down from higher mass states (e.g., χ_c, ψ(2S)) and "cold nuclear matter" effects
 - Work ongoing

J/ψ at the LHC

- > Clear J/ ψ suppression seen for all centralities
- ALICE results show smaller suppression compared to lower energies (PHENIX) in central collisions
- A new regime of quarkonium production has been reached at LHC!!!

J/ ψ suppression vs p₁

arXiv: 1506.08804 arXiv: 1504.07151 Ч^Ч Ч Inclusive J/ $\psi \rightarrow \mu^+\mu^-$, Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV and Au-Au $\sqrt{s_{NN}}$ = 0.2 TeV ALICE, Pb-Pb, √*s*_{NN}=2.76 TeV, *y* <0.8 œ[₹] 1.5 CMS, Pb-Pb, $\sqrt{s_{NN}}$ =2.76 TeV, |y|<2.4 1.2 global syst.= ± 8% ALICE, 2.5<y<4, 0-20% PHENIX, Au-Au, \sqrt{s_{NN}}=0.2 TeV, |y|<0.35 PHENIX, 1.2<|y|<2.2, 0-20% global syst. = $\pm 10\%$ Transport model (Zhou et al., PRC89 (2014) 054911) Transport model (Zhao et al., NPA859 (2011) 114) 0.8 0.6 0.5 0.4 0.2 Centrality 0-40% 0 p_{τ}^{8} (GeV/c) 2 2 3 5 6 0 6 4 $p_{_{\rm T}}$ (GeV/c) ALI-PUB-92773

- > Striking difference between LHC and RHIC data at low p_T
- Clear evidence for (re)generation ?
 - > From simple phenomenological considerations a large J/ ψ enhancement is expected at low transverse momentum

Bottomonium (bb)

- CMS and ALICE measured the suppression of the Upsilon meson family
- A clear suppression of the Upsilon(2S) and Upsilon(3S) relative to the ground state is observed in Pb-Pb

Inclusive Y production vs centrality

- CMS and ALICE measured the suppression of the Upsilon meson family
- A clear suppression of the Upsilon(2S) and Upsilon(3S) relative to the ground state is observed in Pb-Pb
- > Evidence for sequential melting: R_{AA} {Y(1S)} > R_{AA} {Y(2S)} > R_{AA} {Y(3S)}

Conclusions

- The aim of studying the high energy heavy ion collisions is to better understand QCD in conditions not possible in particle physics: confinement, phase diagram of nuclear matter, chiral symmetry restoration
- The conditions reachable are similar to the ones during the early Universe (1 microsecond) and in the core of neutron stars
- > This field incorporates knowledge from many other areas of physics:
 - > Thermodynamics, hydrodynamics, string theory (AdS/CFT)
- ... and technology
 - Detection technologies, Electronics, Computing
- And provides input for fields like:
 - Cosmology, astrophysics, solid-state physics, etc.
- This is a relatively young and very challenging field of study with a rich phenomenology, the manifestation of many-body QCD

What we do in the ALICE-Oslo group

- > Team leader: Prof.Trine Tveter
- Main physics topics:
 - Charmonium production in Pb-Pb, p-Pb and pp collisions
 - Three-particle correlations
 - Elliptic flow
- > Detector expertise:
 - > Time Projection Chamber (TPC)
 - Photon Spectrometer (PHOS)
 - Transition Radiation Detector (TRD)

Backup

Electromagnetic probes

Direct photons and low mass di-

≻

leptons Probe of the thermal radiation of the fireball Low mass di-electrons in PHENIX data > Very clean information because of no re-interactions with OVER OVER OVER OUT AND A STATE OF A STA 10min. bias Au+Au at∖∖s, = 200 GeV DATA $---- \pi^0 \rightarrow \gamma ee$ $J/\psi \rightarrow ee$ |v| < 0.35 $\rightarrow ee$ 10-2 $\eta \rightarrow \gamma ee$ \rightarrow ee (PYTHIA) p_ > 0.2 GeV/c vee $c\overline{c} \rightarrow ee$ (random correlation) 10-3 $\omega \rightarrow ee \& \pi^0 ee$ $\leftrightarrow \phi \rightarrow ee \& \eta ee$ 10-4 An excess is found at masses 10⁻⁵ below 0.6-0.7 GeV/ c^2 10-6 0.5 1.5 2 2.5 3 3.5 4.5 0 m_{ee} (GeV/c²)

Electromagnetic probes

- > Z⁰, W[±], high momentum photons
 - > No direct information on the QGP, but they act as standard candles for the nuclear modification effects: $R_{AA} = 1$

Concepts: participants and spectators

> In nucleus-nucleus collisions at high energies, geometric concepts are applicable

N.Herrman, J.P.Wessels, T.Wienold, Ann.Rev.Nucl.part.Sci. 49(1999) 581

What are the "control parameters"

- > Energy of the collision (per nucleon pair $\sqrt{s_{NN}}$)
- > Centrality of the collision (number of "participating" nucleons, N_{part}) typically measured in percentage of the geometric cross-section ($\sigma_{qeom} = \pi (2R)^2$)

AGS AGS yn (E802.E877.E917) IN/dy net-protons SPS $SPS y_p$ (NA49) Not all beam energy is spent ۶ 60 RHIC RHIC y. (BRAHMS) ... quantified by nuclear stopping net proton counting $(N_p - N_{\overline{p}})$ BRAHMS Collaboration, Phys.Rev.Lett.93 (2004) 102301 20

-4

2

У_{СМ}

The kinetic freeze-out

- Hydro-like "Blast-wave" fits allow to extract parameters like :
 - T_{kine} = kinetic freeze-out temperature
 - $<\beta>$ = collective average velocity
- Light quark hadrons "flow" with a collective velocity of 65% c additional to their own individual movement

arXiv: 1210.8126

The kinetic freeze-out

ALICE, PRL 109 (2012) 252301

- > At the LHC, spectra are harder than at RHIC ($\sqrt{s_{NN}}$ =200GeV)
- The mass dependence of the spectra "hardness" indicates collective motion / flow
- Hydrodynamical models reproduce the data → the fireball expands hydrodynamically nearly as a perfect fluid (very low viscosity)

Jet quenching at the LHC

- Strong suppression observed (stronger than at RHIC)
- Reaching a factor of about 7 at p₁=7-8 GeV/c
- Remains substantial even beyond 50 GeV/c
- A lot of activity in theoretical description of parton energy loss in hot deconfined matter

Two-particle azimuthal correlations

- > High momentum di-jets are created in hard interactions of the initial partons
- Tipically, one of the jets traverse a smaller path through the QGP and escapes, while the other can be quenched (surface bias)

Two-particle azimuthal correlations

Test the strength of this effect using two-particle correlations

Two-particle azimuthal correlations

Dissapearance of the associated particle is observed in nuclear collisions, while no effect is observed in pp and d-Au collisions.

Electromagnetic probes

- Direct photons and low mass dileptons
 - Probe of the thermal radiation of the system via quark anti-quark annihilation
 - Very clean information because of no re-interactions with the QCD medium

Electromagnetic probes

- Direct photons and low mass dileptons
 - Probe of the thermal radiation of the system via quark anti-quark annihilation
 - Very clean information because of no re-interactions with the QCD medium

T = 304 ± 51 MeV T~3.0 x 10¹² K

The highest temperature ever recorded!!!
(ALICE publications)

- > ALICE top 10 cited papers, all with > 200 citations
- Moreover ...

(ATLAS publications)

ATLAS top 3 most cited scientific papers include the Higgs discovery papers and pp jet physics (as expected)

(ATLAS publications)

- Heavy-ion physics papers rank among the highest cited papers in ATLAS, despite the very small physics working group
- Most cited heavy-ion paper by ATLAS rankes 4th, but several others are following closely ...

(CMS publications)

CMS has a few heavy-ion papers in its top-cited scientific papers

(CMS publications)

CMS has a few heavy-ion or heavy-ion inspired papers in its top-cited scientific papers