

EVENT PLANE DETERMINATION

Anjali Sharma
Dr.M.M.Aggarwal and Prof.A.K.Bhati
(PANJAB UNIVERSITY, CHANDIGARH)

ALICE-INDIA COLLABORATION MEETING MARCH 15-17,2017 VECC,KOLKATA

Outline:

- WHAT IS REACTION PLANE / EVENT PLANE
- OUR PROBLEM
- CORRECTION METHODS
- RESULTS
- SUMMARY

Theory:

- **REACTION PLANE (RP)** Plane formed by IMPACT PARAMETER VECTOR "b" and the collision axis. (For central collision i.e. b=0, RP can't be defined)
- In practice, we can not find RP but can only approximate and this approximated RP is known as **EVENT PLANE**.
- Event Flow Vector " \mathbf{Q}_n " and Event Plane Angle ψ_n from the n-th harmonics are defined as :

$$Q_{n}\sin(n\Psi_{n}) = Y_{n} = \sum_{i} w_{i}\sin(n\phi_{n}) \qquad Q_{n}\cos(n\Psi_{n}) = X_{n} = \sum_{i} w_{i}\cos(n\phi_{i})$$

$$\sum_{i} w_{i}\sin(n\phi_{n})$$

$$\left(\arctan\left(\frac{\sum_{i} w_{i}\cos(n\phi_{n})}{\sum_{i} w_{i}\cos(n\phi_{n})}\right)\right)$$

$$\Psi_{n} = \frac{1}{n}$$

Where w_i is weights and φ_n is particle's azimuthal angle.

Schematic Diagram of Reaction Plane:

For the detectors with Perfect azimuthal acceptance i.e.

 $0 \le \phi \le 2\pi$ Reaction plane is isotropic.

Due to finite acceptance of detectors, Anisotropy in an Event Plane occurs.

To remove the anisotropy, Two different methods are used.

Methods of Correction:

FIRST METHOD (*): This correction method is defined by introducing a new angle $\triangle \Psi_n$ as:

$$\Psi_n' = \Psi_n + \triangle \Psi_n$$

where

$$n \triangle \Psi_n = \sum_{i=1}^{l_{max}} \left(\left(\frac{-2}{i} \left\langle \sin \left(in \Psi_n \right) \right\rangle \cos \left(in \Psi_n \right) \right) + \left(\frac{2}{i} \left\langle \cos \left(in \Psi_n \right) \right\rangle \sin \left(in \Psi_n \right) \right) \right)$$

Where "n" is harmonics and " i_{max} " is usually taken as 4/n for n = 1,2.

This method removes possible biases due to imperfect calibration, dead channels or any other detector defects at least upto second order.

*Phys.Rev. C56 (1997) 3254-3264

Methods of Correction (contd.):

SECOND METHOD^(#): Estimation of REACTION PLANE can be obtained from EVENT FLOW VECTOR Q_n which is $Q_n = \sum_{EP} u_n$ where " u_n " is a unit vector defined as

$$u_n = x_n + i y_n \equiv \cos(n\phi) + i \sin(n\phi)$$

Due to imperfect azimuthal acceptance of detector, absolute value of "u_n" does not remain unity. To make "u_n" unity, three step process is as follows:

1. RE-CENTERING: For correcting the shift of u_n -vector due to non-zero values of averaged cosine and sine functions, we do re-centering procedure as: $y_n' = y_n - \overline{s_n}$ $y_n' = y_n - \overline{s_n}$

Where $c_n = \cos(n\phi)$ and $s_n = \sin(n\phi)$

Phys. Rev. C 77,034904(2008)

Methods of Correction:

2. <u>Re-Twisting</u>: Twisting due to irregularity in shape of detector can be corrected by following procedure

$$x'' = \frac{x' - \lambda \frac{s}{2n} \cdot y'}{1 - \lambda \frac{s}{2n} \cdot \lambda \frac{s}{2n}}$$

$$y'' = \frac{y' - \lambda \frac{s + \lambda x'}{2n}}{1 - \lambda \frac{s - \lambda x}{2n}}$$

Where smallness parameter λ is defined as $\lambda_{2n}^{s\pm} = \frac{\overline{s_{2n}}}{a_{2n}^{\pm}}$

3. Re-Scaling: After applying above two corrections, re-scaling is done by dividing corrected "x" and "y" by acceptance coefficient

$$x''' = \frac{x''_n}{a_{2n}^+}$$

$$y''' = \frac{y''_n}{a_{2n}}$$

Where acceptance coefficient is defined as $a_{2n}^{\pm} = 1 \pm \overline{c_{2n}}$

Data Sets used:

We have studied these two methods on 3 different DATA SETS.

HIJING

System: Pb-Pb @ 2.76 TeV

Centrality: 40-50%

Analyzed charged particles with and

without detector effect where in

"WITH DETECTOR EFFECT"

we exclude

 $45^{\circ} < \phi < 55^{\circ}$

TPC

System: Pb-Pb @ 2.76 TeV

Data Set: LHC10h, ESD pass2

Vertex : -10 < Vz < 10 cm

Centrality: 40-50%

Eta: $\eta < 10.81$

Pt: > 0.2 GeV

PMD

System: Pb-Pb @ 2.76 TeV

Data Set: LHC10h, ESD pass2

Vertex : -10 < Vz < 10 cm

Centrality: 40-50%

Eta: $2.3 < \eta < 3.5$

Adc > 432 and ncell > 1

36 < Adc <= 432

Results(first method) HIJING

Results (second method) HIJING:

Results from TPC: (first method)

Results from TPC: (second method)

Results from PMD: (first method)

With MipCut adc > 432 and ncell >1

Results from PMD: (second method)

with MipCut adc > 432 and ncell >1

Results from PMD : (first method)

with MipCut: 36 < adc <= 432

Results from PMD: (second method)

with MipCut: 36 < adc <= 432

Results:

- 1. Difference Plot between corrected TPC event plane and corrected PMD PHOTON-LIKE event plane.
- 2. Difference Plot between corrected TPC event plane and corrected PMD HADRON-LIKE event plane.

Summary and Future Plans:

- ◆ For an event-by-event study of various properties of QGP i.e., Flow, Chiral Magnetic Effect (CME) etc, the "isotropic Event Plane" is main ingredient.
- ◆ Event plane from different detectors (PMD and TPC) along with HIJING event plane has been studied and observed no matching between them, which needs the corrections.
- lacklosh These methods work in nice way to improve the flatness of Event plane but upto 2^{nd} order only.

- Flatness of event plane will be done for V0 and ZDC detectors also.
- The correlation will also be studied for corrected event planes.

THANKS