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PARTON MODEL

Elastic scattering : electron — proton
—> proton (hadron) is NOT point-like

Deep inelastic scattering : electron — proton
—> proton (hadron) consists of point-like particles-partons

Cross section (hadron) = ¥ cross section (parton) x weights

Weights — probabilities in the system of infinite momentum

(Bjorken, Feynman)



IN QCD weights depend on () of hard processes
(SCALING VIOLATION, improved PM)

U?PS — Z% / D;;,(wﬁ Q%)&ﬁe(wlv $1)Dl’z/($15 Q%)dazldwl



Scaling violation (dependence on Q) from
DGLAP ( Dokshitzer-Gribov-Lipatov-Altarelli-Parisi ) equations:
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where ¢(;°) is the running coupling constant at the reference scale 1/,
ns 1s the number of active flavours,
Agcp 1s the dimensional QCD parameter.



It is possible (BUT very rarely):  hard double parton scattering
(subprocesses A and B)

The inclusive cross section of a double parton scattering process in a
hadron collision is written in the following form (with only the assumption

of factorization of the two hard parton subprocesses A and B)
(Paver, Treleant,..., Blok,...., Diehl,...).
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where b is the impact parameter — the distance between centers of

colliding (e.g., the beam and the target) hadrons in transverse plane.

[;i(x1, 29, by, ba; QF, Q3) are the double parton distribution functions, which
depend on the longitudinal momentum fractions z; and z,, and on the

transverse position b; and by of the two parton undergoing hard processes
A and B at the scales (); and ()-.

o and &ﬁ are the parton-level subprocess cross sections.

The factor m /2 appears due to the symmetry of the expression for interchan-
ging parton species i and j. m =1 if A = B, and m = 2 otherwise.



The double parton distribution functions I';;(x1, x9; by, ba; QF, Q5) are the
main object of interest as concerns multiple parton interactions. In fact,
these distributions contain all the information when probing the hadron
in two different points simultaneously, through the hard processes A and

B.

It 1s typically assumed that the double parton distribution functions may
be decomposed in terms of longitudinal and transverse components as
follows:

Fij(fbl, x2; by, ba; Q%a Q%) — D;,,j(fbl, L23 Qi Qﬁ)f(bl)f(bz),

where f(b;) is supposed to be a universal function for all kinds of partons
with the fixed normalization

[ £(b1) f (b1 — b)d*b1d’b = [ T'(b)d’b = 1,

and
T(b) = J f(by) (b — b)d?b,
is the overlap function (not calculated in pQCD).



If one makes the further assumption that the longitudinal components
Dy (21, 20; Q%,Q3) reduce to the product of two independent one parton
distributions,

Dzj(mla L2 Q%? Qg) — D;:l(wl; Q%)D%(CB% Qg)a

the cross section of double parton scattering can be expressed in the

simple form
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is the effective interaction transverse area (effective cross section).
R.¢ 1s an estimate of the size of the hadron.



The momentum (instead of the mized (momentum and coordinate))
representation is more convenient sometimes:
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Here the transverse vector ¢ is equal to the difference of the momenta of
partons from the wave function of the colliding hadrons in the amplitude
and the amplitude conjugated. Such dependence arises because the diffe -
rence of parton transverse momenta within the parton pair is not conserved.



The main problems are

* to make the correct calculation of the two-parton functions

[yi(x1, 20, q; QF, Q3) WITHOUT simplifying factorization assumptions
(which are not sufficiently justified and should be revised:

(Blok, Dokshitzer, Frankfurt, Strikman; Diehl, Schafer;

Gaunt, Stirling;, Ryskin, Snigirev,...))

* to find (observe) longitudinal momentum parton correlations
and deviation from the factorization form of DPS cross section.

These functions are available in the current literature only for q = 0
in the collinear approximation. In this approximation the two-parton
distribution functions,l;;(x1, 29;q = 0; Q% Q*) = D}/ (1, 29; Q%, Q?) with the
two hard scales set equal, satisfy the generalized DGLAP evolution equations
( Kirshner; Shelest, Snigirev, Zinovjev).
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The solutions of the generalized DGLAP evolution equations with the
given initial conditions at the reference scales 1°(f = 0) may be written in
the form:
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The first term is the solution of homogeneous evolution equation
(independent evolution of two branches), where the input two-parton
distribution is generally NOT known at the low scale pu(¢ = 0). For this
non-perturbative two-parton function at low z;, 20 one may assume the
factorization D‘Z}lﬁ/(zl, 29,0) >~ D{f/(zl, O)D{fl(zg, 0) neglecting the constraints
due to momentum conservation (z; + 2, < 1).

This leads to

D;.le(wl, Lo, t) ~ D;:L(a:l, t)D‘;L($2, t)

the factorization hypothesis usually used in current estimations.

This MAIN result shows that if the two-parton distributions are factorized
at some scale 12, then the evolution (second term) violates this factorization
inevitably at any different scale (Q* # u?), apart from the violation due to
the kinematic correlations induced by the momentum conservation.



For a practical employment it is interesting to know the degree of this
violation. We did (Korotkikh, Snigirev) it using the CTEQ fit for single
distributions as an input. The nonperturbative initial conditions Dj(z,0)
are specified in a parametrized form at a fixed low-energy scale )y = u =
1.3 GeV. The particular function forms and the value of )y are not crucial
for the CTEQ global analysis at the flexible enough parametrization,
which reads

:BDZ(:I:, 0) = AgazAJl(l — :B)A%eA%x(l + eAZlaz)A%.

The independent parameters Aj, 1_4{, Al AL fli, Al for parton flavour
combinations u, = u — u, d, = d — d, g and u + d are given in Appendix A
of work: J.Pamplin, et al., JHEP 0207 (2002) 012.

The results of numerical calculations are presented in Fig. for the ratio:

R(CE, t) — (Dg?QCD)($19 L2, t)/ng)(wb t)ng)($2, t)(]‘ — L1 — w2)2)|w1:w2:a)'
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The evolution effects are getting larger with increasing hard scales. The
numerical estimations by integrating directly the evolution equations
(Gaunt, Stirling; Diehl, Kasemets, Keane) confirm also this conclusion.

The particular solutions of non-homogeneous equations contribute to the
inclusive cross section of DPS with a larger weight (different effective
cross section (Cattaruzza, Del Fabbro, Treleani; Ryskin, Snigirev;

Blok, Dokshitzer, Frankfurt, Strikman; Gaunt, Stirling))

as compared to the solutions of homogeneous equations

(the “traditional” factorization component).

The latter solutions are usually approximated by a factorized form if the
initial nonperturbative correlations are absent. These initial correlation
conditions are a prior: unknown yet not quite arbitrary as they obey the
nontrivial sum rules which are imposed upon the evolution equations. The
problem of specifying the initial correlation conditions for the evolution
equations, which would obey exactly these sum rules and have the correct
asymptotic behavior near the kinematical boundaries, has been extensively
studied (Gaunt, Stirling; Snigirev; Ceccopieri; Chang, Manohar, Waalewijn;
Rinaldi, Scopetta, Vento; Golec-Biernat, Lewandowska).



The experimental effective cross section, o.3°, which is not measured
directly but is extracted by means of the normalization to the product of
two single cross sections:

0.7+3j
DPS — [a'eXp] —1
oVigii eff 1

appears to be dependent on the probing hard scale. It should DECREASE
with increasing the resolution scale because all additional contributions
to the cross section of double parton scattering are positive and increase.

In the above formula, 07/ and ¢/’ are the inclusive 7+ jet and dijets cross
sections, J])}Sg is the inclusive cross section of the v+3 jets events produced

in the double parton process.

It is worth noticing that the CDF and DO Collaborations extract o.;"
without any theoretical predictions on the 7+ jet and dijets cross sections,
by comparing the number of observed double parton v + 3 jets events in
ONE pp collision to the number of 7+ jet and dijets events occurring in
TWO separate pp collisions.



The recent D0 measurements represent this effective cross section, o4,

as a function of the second (ordered in the transverse momentum, p;) jet
ot . . . .
pr, Pr -, which can serve as a resolution scale. The obtained cross sections

reveal a tendency to be dependent on this scale.
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This observation can be interpreted as the first indication to the QCD
evolution of double parton distributions
(Snigirev; Flensburg, Gustafson, Lonnblad, Ster ).



Promising candidate processes to probe DPS at the LHC:

e same-sign W production (“pure”, BUT very rare)

® 7 + 3 jets (Tevatron also: D0, CDF)

e W(Z) + 2 jets (ATLAS — first measurement o.;; at LHC)
® 4 jets (Tevatron also: CDF)

® bb pair +2 jets

® bb pair + W boson

e pairs of heavy mesons (in particular, double J/¢ production)
(LHCb — first measurement of double J/v production )



J /1 pairs production

Azimuthal angle difference distribution after imposing cuts on the J/¢
transverse momenta for SPS
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It is rather difficult to disentangle the SPS and DPS (flat) modes: the
difference becomes visible only at sufficiently high cuts, where the production
rates are, indeed, very small.



Distribution over the rapidity difference between .J/¢) mesons. (Dotted
curve: leading-order SPS, dash-dotted curve: DPS)
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Selecting large rapidity difference events looks more promising to disentangle
the SPS and DPS modes



Double differential distribution for the leading-order SPS production mode
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DPS in pA
(Strikman, Treleani; Blok, Strikman, Wiedemann; d’Enterria, Snigirev,.....

1. The two partons of the nucleus belong to the same nucleon

Nuclear enhancement factor A as for SPS



2. The two partons of the nucleus belong to the different nucleons

Nuclear enhancement factor: oc A2/A%3 = A+1/3
(A% due to the difference of the transverse sizes between p and A)



The final DPS cross section “pocket formula” in pA collisions:
oSPS SPS

5 DPS (M) O(NN—a) " F(NN-—b)
(pA—ab) — 2 Toff.pA ’
where )
Ocff pA — = 2]_.5/,Lb
v Ao eﬁ PP _|_ 1}4 TAA(O)]

for p-Pb at o.zp, = 14 mb and Taa(0) = 30.4 1/mb for the standard
nuclear overlap function normalized to A°.

The relative contribution of the two terms are approximately 1 : 2



DPS in AA

1. The two colliding partons belong to the same pair of nucleons
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Nuclear enhancement factor A2 as for SPS



2. Partons from one nucleon in one nucleus collide with partons from two
different nucleons in the other nucleus

E——

-]
L] A
.

|

.
A e ——
<]

Nuclear enhancement factor: oc A3/A%3 = A?+1/3



3. The two colliding partons belong to two different nucleons from both
nuclei (in fact, double nucleon scattering)

Nuclear enhancement factor: oc A*/A%3 = A?+4/3



The final DPS cross section “pocket formula” in AA collisions:

U&Pj_)ab) _ (m) (SJE;?V—ML) o (S]E)ﬁ\f—ﬂy),
2 Oeff, AA
where
1

Ocff AA — — 1.5 nb

A? |05 op + 2 Tan(0) + 5 TAA(O)]

for Pb-Pb at o.zp,, = 14 mb and Tya(0) = 30.4 1/mb for the standard
nuclear overlap function normalized to A2.

The relative contribution of the three terms are approximately 1 : 4 : 200



Centrality-dependence of the DPS

The cross section for SPS and DPS an interval of impact parameters
b1, bs], corresponding a given centrality percentile, fo, = 0 — 100%, of the
total A-A cross section 04,4, with average overlap function < T44(by, by] >
are

O-(Sj:j—wzb) [b17 b2] — A2 ’ O-(SZI\Df?V—)ab) ’ fl [bl? b2]

= O nN—ap) %044 < Taalby, ba] >,

O-PAP:—)Q,I)) [bla b2] — A2 ’ G?]\I?]%_)ab) ’ fl [bla b2]

f2 [bla b2] f3 [bla b2]
O T 0
ff,pp AA( )f1[b1,b2] ’




the three dimensionless and appropriately-normalized fractions read

f%O' AA
A2

21
filb, by] = P./bbf bdb Taa(b) = < Taa[b1, bo] >,

27 b
b1, bs| = 2bdb [ d°b; Ta(b1)Ta(by —b)Ta(b; — b
f2[b1, b2] AT xA(0) /bl / 1 Ta(b1)Ta(b: )Ta(by )s
27 bo 9
f3[b1, ba] = J,> bdb T3 4 (b).

A2TAA(0)



For not very peripheral collisions (fy < 0 — 65%) DPS cross section (in
a thin impact-parameter range) can be approximated by third dominant
term

GPAPjﬁab) [b1, by] =~ O-B\P;J%—m,b) cTettpp* Juoaa < Taalbi, ba] >2
:EO.SPS . oSPS  Fruoan < Tanlb b]>2
9 = (NN—a) (NN—b) " J NV AA AA|Y1, 02 .
For ratio
O'DPS [b b] m
(AA—ab) 1y V2 O'SPS
~ — oy < Taalbi, ba] > .
T lbrs ] 2 TN ’

In the centrality percentile f;, ~ 65 — 100% the second term would add
about 20% more DPS cross section.

For very peripherical collisions (fy ~ 85 — 100%, where < T14[b1,bs| > is
order or less than 1/0.//,,) the contributions from the first term are also
non-negligible (dominant in the limit 1/b — 0).



The formalism of DPS was applied to study:

same-sign W-boson pair production in pPb collisions at LHC energies

J /1¢-pair production in Pb-Pb collisions at LHC energies

Specification in calculations, results and plots
— in original papers (+ nice presentations (d’Enterria) on
Hard Probes 2013, Quark Matter 2014)
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Only main conclusions

p-Pb collisions:

* At the nominal /syy = 8.8 TeV energy, the DPS cross section for
like-sign WW production is about 150 pb, i.e. 600 times larger than that
in proton-proton collisions at the same c.m. energy and 1.5 times higher
than the same-sign WW--2-jets background.

* The measurement of such a process, where 10 events with fully leptonic
W’s decays are expected after cuts in 2 pb~!, would constitute an
unambiguous DPS signal at the LHC, and would help determine the
effective 0., parameter characterizing the area of double parton interactions
in hadronic collisions.
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Pb-Pb collisions:

* DPS constitute an important fraction of the total prompt-.J/v¢ cross
sections, amounting to 20 % (35%) of the primordial production in minimum-
bias (most central) Pb-Pb collisions.

* At 5.5 TeV, about 240 double-J/i) events are expected per unit
rapidity in the dilepton decay channels (in the absence of final-state
suppression) for an integrated luminosity of 1 nb~!, providing interesting
insights on the event-by-event dynamics of J/i¢ production in Pb-Pb
collisions.



DPS production cross sections of
double-J/v, J /i + T, J/b+W, J/i+Z,
double-T, T+W, T+4Z, and same-sign WW
in Pb-Pb and p-Pb at the LHC:

System Jw+J3/ I+ J/p+W J/W+Z YT+ Y+W YT+Z ssWW
Pb-Pb | oPPS 210mb 28 mb 500 ub 330 ub 960 b 34 yb 23 b 630 nb
5.5 TeV | NPPS (1 nb~1) ~250 ~340 ~65 ~14 ~95 ~35 ~8 ~15
p-Pb oDPS 45 b 52 b 120nb 70nb 150nb 7nb 4nb 150 pb
8.8 TeV | NPPS (1 pb~) ~65 ~60 ~15 ~3 ~15 ~8  ~1.5 ~4

(from arXiv:1408.5172 [hep-ph/; Nucl. Phys. A 931, 303 (201}))
The corresponding DPS yields, after (di)lepton decays
and acceptance+efficiency losses, are given for 1 nb~' and 1 pb~! respectively.

Thus, the simultaneous production of quarkonia and /or electroweak bosons
from DPS processes have large visible cross sections and are open to study
in p-Pb and Pb-Pb at the LHC.



m~parton distributions:
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TPS in QCD:
A.M. Snigirev, Phys. Rev. D 94, 034026 (2016)

D. d’Enterria, A.M. Snigirev, arXiv:1612.05582 |hep-ph| (2016) (PRL
118, 122001 (2017))

D. d’Enterria, A.M. Snigirev, arXiv:1612.08112 |[hep-ph| (2016)
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m 1s the combinatorial prefactor

T1ps act = L/ A°D(T(0))"] "

oer = [/ d*b(T(b))*]™

OTPS, fact = K * Oefr

with £ =0.82 4+ 0.11



BACK UP
EXPLICIT solution

Fortunately, the explicit form of evolution equation solutions allows us to
answer the question: which correlations (perturbative or nonperturbative)
are more significant at sufficiently large hard scale.

Indeed, the evolution equations are explicitly solved by introducing the
Mellin transformations

M (n,t) = O/ dxx" D] (x,t),

.y 1 ..
M,{ljz(nl, no, t) = O/ d$1d$20(1 — L1 — wz)w’flwgzDﬁ”(wl, L2, t),

which lead to a system of ordinary linear differential equations of the

first order. In order to obtain the distributions in x representation, an
inverse Mellin transformation should be performed. In the general case
this can be done only numerically. However, the asymptotic behavior can
be estimated in some interesting and particularly simple limits using the
same technique as above.



The exact solutions for single distributions in the moment representation
can be written symbolically in a matrix form:

M](n,t) = [exp P(n)t]],

and the solutions of the generalized DGLAP evolution equations with
the given initial conditions may be written again as a convolution of single
distributions; in the moment representation, they read

M}lez(nla n2, t) - ; , Miz,l 72 (nla n2, O)Mj?ll’(nla t)Mj?zz’(n% t)
1’32
_I_MiﬁgCD) (nla na, t)a
where
Mi%gCD) (nl, no, t) — %: M;’L(nl -+ no, ())_2\47"71‘72 (nl, no, t)
are the particular solutions of the complete equations with zero initial

conditions at the hadron level, and

MgljZ(nl, no, t)

t : . ,
= > [dt'M}(ny + na, ') Py (1, na) Ml (ny, £ — ) MG (ne, t — ).
331’32’ 0



The kernels,
1
Py ;(n) = ({w"Pj/_,j(w)da:,

1
Pjr_j 5, (n1, na) = O/ " (1 — x)"2 Py_, j,(x)dx,

are well-known and can be found in the explicit form.

Now we consider the initial condition effects in the asymptotic behavior
(t — 00). In order to better understand the character of this dependence,
at first we use a toy model with one type of partons (for instance, QCD
theory with gluons only). In this case:

Mil(nla nz, t) — Mél(nla na, 0) eXp{[P(nl) T P(n2)]t}+

P(nq,n2) M} (ny + no, 0)
P(’I’Ll —|— ’I’Lz) — P(nl) — P(’I’L2)

{exp[P(n1 + n3)t] — exp[(P(n1) + P(n2))t]}.



Thus, for ¢ large enough, we have two different asymptotic regimes depending
on the relation between the kernels P(n; + ns) and P(ny) + P(ns):

(1) If P(m -+ 712) < P(n1> + P(n2>, then
M}il(nla na2, t) |t—>oo — {M}il(nla na, O)‘I‘

P(nl, nz)M,%(nl —|— no, 0)
P(nl) —I— P(’nz) — P(n1 —|— ’I’Lg)

] X exp{[P(n1) + P(n2)|t}.

(2) If P(ny +no) > P(ny) + P(ny), then
P(nla ’I’Lz)M&(’l’Ll + N2, O)

P(ny 4+ ng) — P(ny) — P(n2) X exp|P(n1 + ny)t].

M}il(nla n2, t) |t—>oo —

For the second regime, the asymptotic behavior does not dependent on the
initial correlation conditions M;!'(n,ny,0) at all, and is specified by the
correlations perturbatively calculated.



The presence of several parton types does not essentially complicate the
analysis of the asymptotic behavior. Indeed, in this case one has to express
single parton distributions via the eigenfunctions of corresponding DGLAP
equations, put them into solutions above and take the leading contributions
into consideration only.

As a result, the relation between maximum eigenvalues A(n; + n,) and
A(n1)+A(ny) will determine the asymptotic behavior regime of the dPDFs:

(1) If A(ny + no) < A(ny) + A(ng), then the dPDFs are dependent on the
initial correlation conditions M;j'?(ny,ns,0).

(2) If A(ny +n2) > A(ny) + A(ny), then the dPDFs are independent of the
initial correlation conditions M} (ny,ns,0).



The eigenvalues and the eigenfunctions for the single distributions in
QCD have been thoroughly studied. The results of these studies show
that in QCD both asymptotic regimes are realized. Therefore, one needs
to know the initial correlation conditions (which, generally speaking, are
arbitrary and should be extracted from the experiment) to determine
even the asymptotic behavior of the dPDFs. However, we come to the
relation

A(’I’Ll —I— ’I’Lz) > A(’I’Ll) —|— A(’I’Lz)

for large moments n; and n, that determines the dPDFSs in the region of
not parametrically small z; and x5, because A(n) ~ —In(n),n > 1.

We conclude that the dPDFs “forget” the initial correlation conditions
(unknown « priori) at not parametrically small longitudinal momentum
fractions, and the correlations perturbatively calculated survive only in
the limit of large enough hard scales.

Such a dominance is independent of the strength of the initial correlation
conditions.



EVOLUTION CORRECTIONS TO DPS CROSS SECTION

The evolution equation for I';; consists of two terms. The first term
describes the independent (simultaneous) evolution of two branches of
parton cascade: one branch contains the parton x;, and another branch
— the parton x.

The second term allows for the possibility of splitting one parton evolution
(one branch k) into two different branches, i and j. It contains the
usual splitting function F;_.;;(z). The solutions of the generalized DGLAP
evolution equations with the given initial conditions at the reference
scales ;1 may be written in the form:

D';ylljz(wla L2, /1'27 Q%a Qg)

p— Djljz(a}l, L2, ,LL Q Q2) + D]132($1, L2, /,L Qp Qz)
with -
Dglllgz(wla L2, /JJ27 Q?? Q;)

I-z2dzy 1-21dz
= > L D e ) DR it @D DR i @))

Ji’ge’ 1 Z1 T2 Z9



and

mm(Q%,Q%) (k2) 1—x5 dzl 1—2 dZQ

D}Y2(zq, x = k2" — [ —=X
h2 ( 19 23# Qsz) 33132 u/z o k2 :I:/1 - az/z s

y 1
Dy, (Z1+Zz;“2’k2)z1—|— PJ’—>3132< 1_|_Z2
where «,(k?) is the QCD coupling,
Djl(z k*,Q%) are the known single distribution functions (the Green’s

functions) at the parton level with the specific J-like initial conditions
at Q% = k°.

) D} (— K, Q1) D (— k%, Q3)

D‘,il’j ?(21, 29, p1°) is the initial (input) two-parton distribution at the relatively
low scale .

The one parton distribution (before splitting into the two branches at
some scale k%) is given by D (21 + 2o, p1*, k).



The first term is the solution of homogeneous evolution equation (independent
evolution of two branches), where the input two-parton distribution is
generally NOT known at the low scale ;.. For this non-perturbative two-

parton function at low z;, 2o one may assume the factorization D;’flj?l(zl, 29, ) =
Di' (21, p?) Diy? (2, ;1) neglecting the constraints due to momentum conservation
(Zl + 29 < 1)

This leads to

Dy (w1, ®2; 1%, QF, Q3) ~ D; (15 1%, QF) D (25 p*, Q3)
the factorization hypothesis usually used in current estimations.

However, one should note that the input two-parton distribution D“Z}’j (21, 29, 4?)
may be more complicated than that given by factorization ansatz.



As a rule the multiple interactions take place at relatively low transverse
momenta and low z;,, where the factorization hypothesis for the first
term is a good approximation.
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h
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In this case the cross section for double parton scattering can be estimated,
using the two-gluon form factor of the nucleon F,,(¢) for the dominant
gluon-gluon scattering mode (or something similar for other parton scattering
modes)

D, m : : : ’
(Alg)1 — Ezg%l/ D;l(ml; H27 Q%)D'}?l(w% H27 Qz)azk(wla 1)0'31(5'327 2)

DY (x; p2, Q?) D! (x); 12, Q3)dx dx,de, de, | F; (q) (2m )2
From the dipole fit F5(q) = 1/(¢”/m;+1)” it follows that the characteristic
value of ¢ i1s of the order of “effective gluon mass” m,. Thus the initial
conditions for the single distributions can be fixed at some not large
reference scale ;1 ~ m,, because of the weak logarithmic dependence of
these distributions on the scale value.

gives the estimation of [o.g] .



The second term is the solution of complete evolution equation with the
evolution originating from one “nonperturbative” parton at the reference
scale. Here the independent evolution of two branches starts at the scale
k? from a point-like parton j'.
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In this case, the large ¢, domain is NOT suppressed by the form factor
Fy,(q) and the corresponding contribution to the cross section reads

min(Q%,Q3) d? min(Q%,Q3) k2
D522 m / q 205 (k)
— dxdx da: dx > dk
T(A4B) = o ,g,k l [ da:da; 2 (27)2 j'51752" q/2 2mk?
1— :I:zdzl 1— Zldz2 1 21
X — =D (z 2ot 2, k? P;_, —
/ z w/2 2o h,(1—|‘ 25 by ) 21 + 2o J 3132<zl_|_z2>
XDjl’(z )D (z2 K Q2)Uzk(m1’w1)03l(w2’w2)
min(Q%,Q%) /o o (]{;,2) 1— 3’32 dzl 1—2z1 ng
T el e R R L
q ] 1 xy 2
1 21 x! ’ ’
X Py <—)D§€1'(—15 k 29 Q%)Dl ( 2 K ; Q2)’

Z1 + 22 Z1 + 22




or in substantially shorter yet less transparent form:

min(Q%,Q%) d?

D2><2”1’ / : q
dxidx da: dx

(A B) o 9 ,J’kl/ 1E0L2 2 / (271.)2

Dr}ibjz(wla L2; q2, Q%a Qg)
Xazk(wh wl)o'gz (22, C‘%)Dh'z(aﬁv 55 q°, Q75 Q3)-

By analogy, the combined (“interference”) contribution may be written
as

min(Q7,Q3) d2
D X2 m / 2 q
oCAB = /da:ldazzda: dz., / Fy (q) (22

2 ,J,kl
[D’(wl,u QZ)DJ(JJ'Z’N QZ)Uzk(wl?ml)U (wvaz)Dh'z(wpwz’q Q Qg)

Dr}ijz(wlvwﬁq{Q Qz)azk(wlawl)al(w%wz)D (wlaﬂ Q)D (5132,[1, Qz)]



The equations (above and below) present our solution of the problem —
we obtain the estimation of the inclusive cross section for double parton
scattering, taking into account the QCD evolution and basing on the well-
known collinear distributions, extracted from deep inelastic scattering:

D __ _D,ax1 D,x2 D,2x2
T(a,B) = O(4,B) T T4,B) T T(4,B)

Afterwards similar results were obtained also by Blok, Dokshitzer, Frankfurt, Strikman
with an emphasis on the differential cross sections, then by Gaunt, Stirling (as
concerning 1 x 1, 1 X 2 components)

2 x 2 component (double splitting diagrams ) is the subject of discussion
and our disagreement with Blok, Dokshitzer, Frankfurt, Strikman,; Gaunt, Stirling,
Manohar, Waalewijn, mainly in a terminology.



At a large final scale ()° the contribution of second (2 x 2) component
should dominate being proportional to ¢° ~ Q?, while the contributions
of the 1 x 1 or 1 x 2 components ~ m?] ~ 1/o.s; are limited by the nucleon
(hadron) form factorF,.

In terms of impact parameters b this means that in the second (2 x 2)
term two pairs of partons are very close to each other; |b; — by| ~ 1/0).

We have to emphasize that the dominant contribution to the phase space
integral comes from a large ¢° ~ ()° and, strictly speaking, the above
reasoning makes no allowance for the collinear (DGLAP) evolution of two
independent branches of the parton cascade (i.e., in the ladders L1, L2, L1’
and L2') in the 2 x 2 term.

Formally in the framework of collinear approach this contribution should
be considered as the result of interaction of one pair of partons with the
2 — 4 hard subprocess (Blok, Dokshitzer, Frankfurt, Strikman; Gaunt, Stirling;
Manohar, Waalewijn).

On the boundary of phase space our formula reproduces naturally this result (2 — 4)
due to the specific 0-like initial conditions at k* = Q* for Green’s functions.



Recall, however, that when estimating the phase space integral we neglect
the anomalous dimension, v, of the parton distributions

Di(x/z, k*,Q%) o (Q°/k*)). In collinear approach the anomalous dimensions
v X oy << 1 are assumed to be small. On the other hand, in a low x region
the value of anomalous dimension is enhanced by the In(1/x) logarithm
and may be rather large numerically.

So the integral over ¢° is slowly convergent and the major contribution to
the cross section is expected to come actually from some characteristic
intermediate region, mg << @7 << Q7 (Q1 < Qo).

Thus we do not expect such strong sensitivity to the upper limit of ¢-
integration as in the case of the pure phase space integral.

Therefore it makes sense to consider the quantitative contribution of the
2 x 2 term even within the collinear approach as applied to the LHC
kinematics, where the large (in comparison with m,) available values of
)1 and (), provide wide enough integration region for the characteristic
loop momenta g.



We demonstrate this fact by direct calculation in the double logarithm
approximation. Let us put down the all integrations with splitting functions
separately to make the analysis more transparent

g min(Q1,Q3) o (k?) 1-r2dz; 1-x1dz,
D}y (x1, 225 4%, QF, Q3) = [ dk’ [

33132 q? 2mk? T <1 T2 29

./ 1 I S %)
D? (z1 4 zo3 2, k° Pjr_, ;. —D’ —: k2, Q3 D’ (=5 k%, Q3).
h( 1 25 1y )z1—|— 3132< 1—|—z2) (zl’ 9Q1) yg(zz’ 9Q2)
In the double logarithm approximation we can restrict ourselves to the

gluon main contribution only and rewrite the integral under consideration
in the following form

min(Q1,Q3) o, (k?) dz
Dgg(wh L2y qza Q%a Qg) — qé dkz 27t ko2 / Dg(u H kz) / (1 — Z)

T L2
X Pgﬁgg(z)DZ(E3 k?, Q%)Dg

;kZ 2 )
I\ u(l — 2z) @



The Green’s functions (gluon distributions at the parton level) in the
double logarithm approximation read

zDf(xz,t) ~ AN tv =32 exp [v — at]/V/ 2,

where

v = \8N.tIn(1/x), a = 16—1NC + %nf/ch

a0 2 ln(%;
t(Q°) = 5ln{ln(1’é

/s
and where
B = (11N, — an)/3

ns 1s the number of active flavors, A i1s the dimensional QCD parameter,
N. = 3 is the color number and the one-loop running QCD coupling

on(@) = T
’ ~ BIn(Q?/A?)

was used



After that the integral may be rewritten as

$1w2ngLg(w17 T2 T, 11, T))

min(71,T%) | |
~ / dt [dzP,_,,(z) [ dyexp [V8N.d(t,y, z)],

T

where

d(t,y,z) = Vty + /(Ty — t) (Y1 — y) + (T2 — t) (Y2 — v)
with
t =t(k%), Ty = t(Q}), T = t(Q3), 7 = t(q?)

and

y = In(1/u), Yi = In(1/x1) — In(1/2), s = In(1/22) — In(1/(1 — 2)).

We keep the leading exponential terms only, which have the same structure
both at the parton level and at the hadron one under the smooth enough
initial conditions at the reference scale.



We are interested in the domain with large enough 77, 75, In(1/x1) and
In(1/x5), when the exponential factors are large in comparison with 1 and
where the approximations above are justified. In this case the integration
over the rapidity y has the saddle point structure in the wide interval of z-
integration not near the kinematic boundaries. The saddle-point equation

reads
vVt (Ti—-t) (Tz—t) .
VU (Y1 —yo) (Y2 — yo)

It may be solved explicitly in the simplest case of the two hard scales
set equal 77 = 7, = T and at V7 ~ Y, ~ YV = In(1/x), i.e., in the z-
region where In(1/z) << In(1/x) and In(1/(1 — 2)) << In(1/z) (In spite of
the large nonexponential factor like In(1/x) (due to the singularity of the splitting
function Py_.,,(2)) the contribution from the integration region near the kinematical

boundaries z ~ x and 1 — z ~ x 1s not dominant, since in this case the obtained
exponential factor exp [v/8N.Y (T — 7)| is not leading).

Then the saddle-point is equal to
Yo = Yt/(4T — 3t).



Thus, the splitting integrals reduce to

1—x

T
r’D¥(x, 37, T, T) ~ [dt | dzP,_,,(z)exp [V8N.Y (4T — 3t)].

The {-integration is not a saddle-point type and therefore one of edges,
namely ¢ — 7, dominates. That is

r’D¥(x, z; T, T, T) ~ exp [V8N./Y (4T — 37)].

What follows from our estimation of splitting integrals in the double
logarithm approximation by the saddle-point method ?



For single splitting diagrams (1 x 2 contribution)

the lower limit for the /-integration may be taken at the reference scale,
i.e., 7 = t(¢°)|;—, = 0 due to the strong suppression factor F7 (q). The
characteristic value of ¢ being of the order of “effective gluon mass” m, ~ p
in the further g¢-integration. Thus one obtains for this contribution the
following estimation

r’DY9(x, 2;0,T,T) ~ exp [VS8N. (VYT + VYT)].

It means that the splitting takes place in the “characteristic point” with
the scale k” close to 1> and with the longitudinal momentum fraction
u ~ 1 (the saddle-point y; ~ ¢ ~ 7 ~ ( in this case).

After splitting one has the TWO independent ladders with the well-
developed BFKL and DGLAP evolution. Every ladder contributes to the
cross section with the large exponential factor, exp [\/S8N.v/YT], which is
just the same as for single distributions.

Therefore in the double logarithm approximation single splitting diagrams
have, in fact, the factorization property if one takes the leading exponential
factors into consideration only.



For double splitting (2 x 2) diagrams

the leading exponential contribution arises from the lower limits of ¢- and
either lower or upper limits of ¢g-integrations depending on the available
rapidity interval Y.

There is competition between the exponential factor caused by the evolution,
which prefers a small 7, and the phase space factor in ¢*-integral.

Due to the non-logarithmic character of the integration over d°q for a not
sufficiently large Y the contribution from the upper limit of ¢ may dominate.
Indeed, let us consider the production of two bb pairs in a central rapidity
(n ~ 0) region. That is we take 77 =T, =T, Y, = Y, = Y and keep just the
leading exponential factors in the double parton distributions

> Dyo(x, z, ¢, Q%, Q?) ~ exp(/8N.Y (4T — 31) — 2aT + aT).

Thus the logarithmic dg”/¢” integral takes the form

dq?
| L exp(2/8N.Y (4T — 37) — 4aT + 2a7)q".
q
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The ¢-dependence of the integrand f(L) in the logarithmic scale
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f(L) = exp (2¢8NCY(4T — 37) — 4aT + 2a7'> exp
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with
L = In(g*/A*%) = In(u?/A?)e7/?



For the DPS production of two bb pairs the major contribution comes
from a low ¢° in the case of Y = 5 corresponding to the LHC energy

Vs =14 TeV

That is the reaction may be effectively described by the 1 x 1 term; the
formation of TWO parton branches (one to two splitting) takes place
mainly at low scales.

However at the RHIC energy, when the available rapidity interval is not
large (Y = 2), the ¢°~-dependence is not steep and the contribution caused
by the splitting somewhere in the mid of evolution is still not negligible.

The same can be said about the DPS 11/-boson production at the LHC.
Here the upper edge of the ¢°-integral dominates. This part may be
described as the collision of one pair of partons supplemented by a more
complicated, 2 — 4 or 2 — 21/, hard matrix element. However, clearly we
need to account also for contributions from the whole ¢*-interval.



For the debatable double splitting diagrams,
depending on the precise kinematics, we may deal:

e either with a single parton pair collision (times the 2 — 4 hard subprocess)
in accordance with Blok, Dokshitzer, Frankfurt, Strikman; Gaunt, Stirling; Manohar,
Waalewin

e or with the contribution of the 1 x 1 type where the formation of two
parton branches (one to two splitting) takes place at low scales

e or with the 2 x 2 configuration where the splitting may happen
EVERYWHERE (with more or less equal probabilities) during the
evolution.

In order to probe the QCD evolution of the double distribution functions
better we suggest also to investigate the processes with two quite different
scales, in particular, production of a bb pair (or .J/v¢) with W, which
was estimated at the LHC kinematical conditions using the factorized
component only.



