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PARTON MODEL�������������������Elasti
 s
attering : ele
tron � proton���> proton (hadron) is NOT point-likeDeep inelasti
 s
attering : ele
tron � proton���> proton (hadron) 
onsists of point-like parti
les-partons��������������������Cross se
tion (hadron) = Σ 
ross se
tion (parton) × weightsWeights � probabilities in the system of in�nite momentum(Bjorken, Feynman)



IN QCD weights depend on Q of hard pro
esses(SCALING VIOLATION, improved PM)
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S
aling violation (dependen
e on Q) fromDGLAP ( Dokshitzer-Gribov-Lipatov-Altarelli-Parisi ) equations:
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where g(µ2) is the running 
oupling 
onstant at the referen
e s
ale µ2,

nf is the number of a
tive �avours,
ΛQCD is the dimensional QCD parameter.



It is possible (BUT very rarely): hard double parton s
attering(subpro
esses A and B)

The in
lusive 
ross se
tion of a double parton s
attering pro
ess in ahadron 
ollision is written in the following form (with only the assumptionof fa
torization of the two hard parton subpro
esses A and B)(Paver, Treleani,..., Blok,...., Diehl,...).
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2b,where b is the impa
t parameter � the distan
e between 
enters of
olliding (e.g., the beam and the target) hadrons in transverse plane.

Γij(x1, x2;b1,b2;Q
2
1, Q

2
2) are the double parton distribution fun
tions, whi
hdepend on the longitudinal momentum fra
tions x1 and x2, and on thetransverse position b1 and b2 of the two parton undergoing hard pro
esses

A and B at the s
ales Q1 and Q2.
σ̂Aik and σ̂Bjl are the parton-level subpro
ess 
ross se
tions.The fa
torm/2 appears due to the symmetry of the expression for inter
han-ging parton spe
ies i and j. m = 1 if A = B, and m = 2 otherwise.



The double parton distribution fun
tions Γij(x1, x2;b1,b2;Q
2
1, Q

2
2) are themain obje
t of interest as 
on
erns multiple parton intera
tions. In fa
t,these distributions 
ontain all the information when probing the hadronin two di�erent points simultaneously, through the hard pro
esses A and

B.It is typi
ally assumed that the double parton distribution fun
tions maybe de
omposed in terms of longitudinal and transverse 
omponents asfollows:
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al
ulated in pQCD).



If one makes the further assumption that the longitudinal 
omponents
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e to the produ
t of two independent one partondistributions,
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the 
ross se
tion of double parton s
attering 
an be expressed in thesimple form
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tive intera
tion transverse area (e�e
tive 
ross se
tion).
Reff is an estimate of the size of the hadron.



The momentum (instead of the mixed (momentum and 
oordinate))representation is more 
onvenient sometimes:
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tor q is equal to the di�eren
e of the momenta ofpartons from the wave fun
tion of the 
olliding hadrons in the amplitudeand the amplitude 
onjugated. Su
h dependen
e arises be
ause the di�e -ren
e of parton transverse momenta within the parton pair is not 
onserved.



The main problems are* to make the 
orre
t 
al
ulation of the two-parton fun
tions

Γij(x1, x2;q;Q2
1, Q

2
2) WITHOUT simplifying fa
torization assumptions(whi
h are not su�
iently justi�ed and should be revised:(Blok, Dokshitzer, Frankfurt, Strikman; Diehl, S
hafer;Gaunt, Stirling; Ryskin, Snigirev;...))* to �nd (observe) longitudinal momentum parton 
orrelationsand deviation from the fa
torization form of DPS 
ross se
tion.These fun
tions are available in the 
urrent literature only for q = 0in the 
ollinear approximation. In this approximation the two-partondistribution fun
tions,Γij(x1, x2;q = 0;Q2, Q2) = Dij

h (x1, x2;Q
2, Q2) with thetwo hard s
ales set equal, satisfy the generalized DGLAP evolution equations( Kirshner; Shelest, Snigirev, Zinovjev).
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The solutions of the generalized DGLAP evolution equations with thegiven initial 
onditions at the referen
e s
ales µ2(t = 0) may be written inthe form:
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The �rst term is the solution of homogeneous evolution equation(independent evolution of two bran
hes), where the input two-partondistribution is generally NOT known at the low s
ale µ(t = 0). For thisnon-perturbative two-parton fun
tion at low z1, z2 one may assume thefa
torization Dj1
′j2′

h (z1, z2, 0) ≃ Dj1
′

h (z1, 0)Dj2
′

h (z2, 0) negle
ting the 
onstraintsdue to momentum 
onservation (z1 + z2 < 1).This leads to
Dij

h1(x1, x2, t) ≃ Di
h(x1, t)Dj

h(x2, t)the fa
torization hypothesis usually used in 
urrent estimations.This MAIN result shows that if the two-parton distributions are fa
torizedat some s
ale µ2, then the evolution (se
ond term) violates this fa
torizationinevitably at any di�erent s
ale (Q2 6= µ2), apart from the violation due tothe kinemati
 
orrelations indu
ed by the momentum 
onservation.



For a pra
ti
al employment it is interesting to know the degree of thisviolation. We did (Korotkikh, Snigirev) it using the CTEQ �t for singledistributions as an input. The nonperturbative initial 
onditions Dj
h(x, 0)are spe
i�ed in a parametrized form at a �xed low-energy s
ale Q0 = µ =

1.3 GeV. The parti
ular fun
tion forms and the value of Q0 are not 
ru
ialfor the CTEQ global analysis at the �exible enough parametrization,whi
h reads
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ombinations uv ≡ u− ū, dv ≡ d− d̄, g and ū+ d̄ are given in Appendix Aof work: J.Pamplin, et al., JHEP 0207 (2002) 012.The results of numeri
al 
al
ulations are presented in Fig. for the ratio:
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The evolution e�e
ts are getting larger with in
reasing hard s
ales. Thenumeri
al estimations by integrating dire
tly the evolution equations(Gaunt, Stirling; Diehl, Kasemets, Keane) 
on�rm also this 
on
lusion.The parti
ular solutions of non-homogeneous equations 
ontribute to thein
lusive 
ross se
tion of DPS with a larger weight (di�erent e�e
tive
ross se
tion (Cattaruzza,Del Fabbro,Treleani; Ryskin, Snigirev;Blok, Dokshitzer, Frankfurt, Strikman; Gaunt, Stirling))as 
ompared to the solutions of homogeneous equations(the �traditional� fa
torization 
omponent).The latter solutions are usually approximated by a fa
torized form if theinitial nonperturbative 
orrelations are absent. These initial 
orrelation
onditions are a priori unknown yet not quite arbitrary as they obey thenontrivial sum rules whi
h are imposed upon the evolution equations. Theproblem of spe
ifying the initial 
orrelation 
onditions for the evolutionequations, whi
h would obey exa
tly these sum rules and have the 
orre
tasymptoti
 behavior near the kinemati
al boundaries, has been extensivelystudied (Gaunt, Stirling; Snigirev; Ce

opieri; Chang, Manohar, Waalewijn;Rinaldi, S
opetta,Vento; Gole
-Biernat, Lewandowska).



The experimental e�e
tive 
ross se
tion, σexp
eff , whi
h is not measureddire
tly but is extra
ted by means of the normalization to the produ
t oftwo single 
ross se
tions:

σγ+3j
DPS

σγjσjj
= [σexp

eff ]−1,

appears to be dependent on the probing hard s
ale. It should DECREASEwith in
reasing the resolution s
ale be
ause all additional 
ontributionsto the 
ross se
tion of double parton s
attering are positive and in
rease.In the above formula, σγj and σjj are the in
lusive γ+ jet and dijets 
rossse
tions, σγ+3j
DPS is the in
lusive 
ross se
tion of the γ+3 jets events produ
edin the double parton pro
ess.It is worth noti
ing that the CDF and D0 Collaborations extra
t σexp

effwithout any theoreti
al predi
tions on the γ+ jet and dijets 
ross se
tions,by 
omparing the number of observed double parton γ + 3 jets events inONE pp̄ 
ollision to the number of γ+ jet and dijets events o

urring inTWO separate pp̄ 
ollisions.



The re
ent D0 measurements represent this e�e
tive 
ross se
tion, σexp
eff ,as a fun
tion of the se
ond (ordered in the transverse momentum, pT) jet

pT , pjet2
T , whi
h 
an serve as a resolution s
ale. The obtained 
ross se
tionsreveal a tenden
y to be dependent on this s
ale.
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This observation 
an be interpreted as the �rst indi
ation to the QCDevolution of double parton distributions(Snigirev; Flensburg, Gustafson, Lonnblad, Ster ).



Promising 
andidate pro
esses to probe DPS at the LHC:

• same-sign W produ
tion (�pure�, BUT very rare)

• γ + 3 jets (Tevatron also: D0, CDF)

• W (Z) + 2 jets (ATLAS � �rst measurement σeff at LHC)

• 4 jets (Tevatron also: CDF)
• bb̄ pair +2 jets

• bb̄ pair + W boson

• pairs of heavy mesons (in parti
ular, double J/ψ produ
tion)(LHCb � �rst measurement of double J/ψ produ
tion )



J/ψ pairs produ
tionAzimuthal angle di�eren
e distribution after imposing 
uts on the J/ψtransverse momenta for SPS

It is rather di�
ult to disentangle the SPS and DPS (�at) modes: thedi�eren
e be
omes visible only at su�
iently high 
uts, where the produ
tionrates are, indeed, very small.



Distribution over the rapidity di�eren
e between J/ψ mesons. (Dotted
urve: leading-order SPS, dash-dotted 
urve: DPS)

Sele
ting large rapidity di�eren
e events looks more promising to disentanglethe SPS and DPS modes



Double di�erential distribution for the leading-order SPS produ
tion mode



DPS in pA(Strikman, Treleani; Blok, Strikman, Wiedemann; d'Enterria, Snigirev,.....) :1. The two partons of the nu
leus belong to the same nu
leon

Nu
lear enhan
ement fa
tor A as for SPS



2. The two partons of the nu
leus belong to the di�erent nu
leons

Nu
lear enhan
ement fa
tor: ∝ A2/A2/3 = A1+1/3(A2/3 due to the di�eren
e of the transverse sizes between p and A)



The �nal DPS 
ross se
tion �po
ket formula� in pA 
ollisions:
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(pA→ab) =







m

2







σSPS
(NN→a) · σSPS

(NN→b)

σeff ,pA

,where
σeff ,pA =

1

A
[

σ−1
eff ,pp + 1

A
TAA(0)

] = 21.5µbfor p-Pb at σeff,pp = 14 mb and TAA(0) = 30.4 1/mb for the standardnu
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tion normalized to A2.

The relative 
ontribution of the two terms are approximately 1 : 2



DPS in AA :1. The two 
olliding partons belong to the same pair of nu
leons

Nu
lear enhan
ement fa
tor A2 as for SPS



2. Partons from one nu
leon in one nu
leus 
ollide with partons from twodi�erent nu
leons in the other nu
leus

Nu
lear enhan
ement fa
tor: ∝ A3/A2/3 = A2+1/3



3. The two 
olliding partons belong to two di�erent nu
leons from bothnu
lei (in fa
t, double nu
leon s
attering)

Nu
lear enhan
ement fa
tor: ∝ A4/A2/3 = A2+4/3



The �nal DPS 
ross se
tion �po
ket formula� in AA 
ollisions:
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lear overlap fun
tion normalized to A2.

The relative 
ontribution of the three terms are approximately 1 : 4 : 200



Centrality-dependen
e of the DPSThe 
ross se
tion for SPS and DPS an interval of impa
t parameters

[b1, b2], 
orresponding a given 
entrality per
entile, f% = 0 − 100%, of thetotal A-A 
ross se
tion σAA, with average overlap fun
tion < TAA[b1, b2] >are
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the three dimensionless and appropriately-normalized fra
tions read
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For not very peripheral 
ollisions (f% < 0 − 65%) DPS 
ross se
tion (ina thin impa
t-parameter range) 
an be approximated by third dominantterm
σDPS

(AA→ab)[b1, b2] ≃ σDPS
(NN→ab) · σeff,pp · f%σAA· < TAA[b1, b2] >2

=
m

2
σSPS

(NN→a) · σSPS
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≃ m

2
σSPS

(NN→b)· < TAA[b1, b2] > .

In the 
entrality per
entile f% ≃ 65 − 100% the se
ond term would addabout 20% more DPS 
ross se
tion.For very peripheri
al 
ollisions (f% ≃ 85 − 100%, where < TAA[b1, b2] > isorder or less than 1/σeff,pp) the 
ontributions from the �rst term are alsonon-negligible (dominant in the limit 1/b→ 0).



The formalism of DPS was applied to study:

same-sign W-boson pair produ
tion in pPb 
ollisions at LHC energies

J/ψ-pair produ
tion in Pb-Pb 
ollisions at LHC energies

Spe
i�
ation in 
al
ulations, results and plots� in original papers (+ ni
e presentations (d'Enterria) onHard Probes 2013, Quark Matter 2014)





Only main 
on
lusionsp-Pb 
ollisions:* At the nominal √sNN = 8.8 TeV energy, the DPS 
ross se
tion forlike-sign WW produ
tion is about 150 pb, i.e. 600 times larger than thatin proton-proton 
ollisions at the same 
.m. energy and 1.5 times higherthan the same-sign WW+2-jets ba
kground.* The measurement of su
h a pro
ess, where 10 events with fully leptoni
W's de
ays are expe
ted after 
uts in 2 pb−1, would 
onstitute anunambiguous DPS signal at the LHC, and would help determine thee�e
tive σeff parameter 
hara
terizing the area of double parton intera
tionsin hadroni
 
ollisions.





Pb-Pb 
ollisions:* DPS 
onstitute an important fra
tion of the total prompt-J/ψ 
rossse
tions, amounting to 20 % (35%) of the primordial produ
tion in minimum-bias (most 
entral) Pb-Pb 
ollisions.* At 5.5 TeV, about 240 double-J/ψ events are expe
ted per unitrapidity in the dilepton de
ay 
hannels (in the absen
e of �nal-statesuppression) for an integrated luminosity of 1 nb−1, providing interestinginsights on the event-by-event dynami
s of J/ψ produ
tion in Pb-Pb
ollisions.



DPS produ
tion 
ross se
tions ofdouble-J/ψ, J/ψ + Υ, J/ψ+W, J/ψ+Z,double-Υ, Υ+W, Υ+Z, and same-sign WWin Pb-Pb and p-Pb at the LHC:System J/ψ + J/ψ J/ψ + Υ J/ψ+W J/ψ+Z Υ + Υ Υ+W Υ+Z ssWWPb-Pb σDPS 210 mb 28 mb 500 µb 330 µb 960 µb 34 µb 23 µb 630 nb5.5 TeV NDPS (1 nb−1) ∼250 ∼340 ∼65 ∼14 ∼95 ∼35 ∼8 ∼15p-Pb σDPS 45 µb 5.2 µb 120 nb 70 nb 150 nb 7 nb 4 nb 150 pb8.8 TeV NDPS (1 pb−1) ∼65 ∼60 ∼15 ∼3 ∼15 ∼8 ∼1.5 ∼4

(from arXiv:1408.5172 [hep-ph℄; Nu
l. Phys. A 931, 303 (2014))The 
orresponding DPS yields, after (di)lepton de
aysand a

eptan
e+e�
ien
y losses, are given for 1 nb−1 and 1 pb−1 respe
tively.Thus, the simultaneous produ
tion of quarkonia and/or ele
troweak bosonsfrom DPS pro
esses have large visible 
ross se
tions and are open to studyin p-Pb and Pb-Pb at the LHC.



m-parton distributions:
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Shelest, Snigirev, Zinovjev, Preprint ITP-83-46E, Kiev, 1983



TPS in QCD:A.M. Snigirev, Phys. Rev. D 94, 034026 (2016)D. d'Enterria, A.M. Snigirev, arXiv:1612.05582 [hep-ph℄ (2016) (PRL118, 122001 (2017))D. d'Enterria, A.M. Snigirev, arXiv:1612.08112 [hep-ph℄ (2016)

σTPS
hh′→abc = [m/(3!)] · σSPS

hh′→a · σSPS
hh′→b · σSPS

hh′→c/σ2
TPS,fact,

m is the 
ombinatorial prefa
tor
σ2

TPS,fact = [
∫

d2b(T (b))3]−1.

σeff = [
∫

d2b(T (b))2]−1

σTPS,fact = k · σeffwith k = 0.82 ± 0.11



BACK UPEXPLICIT solutionFortunately, the expli
it form of evolution equation solutions allows us toanswer the question: whi
h 
orrelations (perturbative or nonperturbative)are more signi�
ant at su�
iently large hard s
ale.Indeed, the evolution equations are expli
itly solved by introdu
ing theMellin transformations
M j

h(n, t) =
1
∫

0
dxxn Dj

h(x, t),

M j1j2
h (n1, n2, t) =

1
∫

0
dx1dx2θ(1 − x1 − x2)x

n1
1 xn2

2 Dj1j2
h (x1, x2, t),whi
h lead to a system of ordinary linear di�erential equations of the�rst order. In order to obtain the distributions in x representation, aninverse Mellin transformation should be performed. In the general 
asethis 
an be done only numeri
ally. However, the asymptoti
 behavior 
anbe estimated in some interesting and parti
ularly simple limits using thesame te
hnique as above.



The exa
t solutions for single distributions in the moment representation
an be written symboli
ally in a matrix form:

M j
i (n, t) = [exp P (n)t]ji ,and the solutions of the generalized DGLAP evolution equations withthe given initial 
onditions may be written again as a 
onvolution of singledistributions; in the moment representation, they read

M j1j2
h (n1, n2, t) =

∑

j1′j2′
M j1

′j2′
h (n1, n2, 0)M j1

j1′(n1, t)M j2
j2′(n2, t)

+M j1j2
h(QCD)(n1, n2, t),where

M j1j2
h(QCD)(n1, n2, t) =

∑

i
M i

h(n1 + n2, 0)M j1j2
i (n1, n2, t)are the parti
ular solutions of the 
omplete equations with zero initial
onditions at the hadron level, and

M j1j2
i (n1, n2, t)

=
∑

jj1′j2′

t
∫

0
dt′M j

i (n1 + n2, t′)Pj→j1′j2′(n1, n2)M
j1
j1′(n1, t − t′)M j2

j2′(n2, t − t′).



The kernels,
Pj′→j(n) =

1
∫

0
xnPj′→j(x)dx,

Pj′→j1j2(n1, n2) =
1
∫

0
xn1(1 − x)n2Pj′→j1j2(x)dx,are well-known and 
an be found in the expli
it form.Now we 
onsider the initial 
ondition e�e
ts in the asymptoti
 behavior(t→ ∞). In order to better understand the 
hara
ter of this dependen
e,at �rst we use a toy model with one type of partons (for instan
e, QCDtheory with gluons only). In this 
ase:

M 11
h (n1, n2, t) = M 11

h (n1, n2, 0) exp{[P (n1) + P (n2)]t}+

P (n1, n2)M
1
h(n1 + n2, 0)

P (n1 + n2) − P (n1) − P (n2)
{exp[P (n1 + n2)t] − exp[(P (n1) + P (n2))t]}.



Thus, for t large enough, we have two di�erent asymptoti
 regimes dependingon the relation between the kernels P (n1 + n2) and P (n1) + P (n2):(1) If P (n1 + n2) < P (n1) + P (n2), then

M 11
h (n1, n2, t)|t→∞ =

[

M 11
h (n1, n2, 0)+

P (n1, n2)M
1
h(n1 + n2, 0)

P (n1) + P (n2) − P (n1 + n2)

]

× exp{[P (n1) + P (n2)]t}.

(2) If P (n1 + n2) > P (n1) + P (n2), then
M 11

h (n1, n2, t)|t→∞ =
P (n1, n2)M

1
h(n1 + n2, 0)

P (n1 + n2) − P (n1) − P (n2)
× exp[P (n1 + n2)t].

For the se
ond regime, the asymptoti
 behavior does not dependent on theinitial 
orrelation 
onditions M 11
h (n1, n2, 0) at all, and is spe
i�ed by the
orrelations perturbatively 
al
ulated.



The presen
e of several parton types does not essentially 
ompli
ate theanalysis of the asymptoti
 behavior. Indeed, in this 
ase one has to expresssingle parton distributions via the eigenfun
tions of 
orresponding DGLAPequations, put them into solutions above and take the leading 
ontributionsinto 
onsideration only.As a result, the relation between maximum eigenvalues Λ(n1 + n2) and

Λ(n1)+Λ(n2) will determine the asymptoti
 behavior regime of the dPDFs:(1) If Λ(n1 + n2) < Λ(n1) + Λ(n2), then the dPDFs are dependent on theinitial 
orrelation 
onditions M j1j2
h (n1, n2, 0).(2) If Λ(n1 + n2) > Λ(n1) + Λ(n2), then the dPDFs are independent of theinitial 
orrelation 
onditions M j1j2
h (n1, n2, 0).



The eigenvalues and the eigenfun
tions for the single distributions inQCD have been thoroughly studied. The results of these studies showthat in QCD both asymptoti
 regimes are realized. Therefore, one needsto know the initial 
orrelation 
onditions (whi
h, generally speaking, arearbitrary and should be extra
ted from the experiment) to determineeven the asymptoti
 behavior of the dPDFs. However, we 
ome to therelation

Λ(n1 + n2) > Λ(n1) + Λ(n2)for large moments n1 and n2 that determines the dPDFs in the region ofnot parametri
ally small x1 and x2, be
ause Λ(n) ∼ − ln(n), n≫ 1.We 
on
lude that the dPDFs �forget� the initial 
orrelation 
onditions(unknown a priori) at not parametri
ally small longitudinal momentumfra
tions, and the 
orrelations perturbatively 
al
ulated survive only inthe limit of large enough hard s
ales.Su
h a dominan
e is independent of the strength of the initial 
orrelation
onditions.



EVOLUTION CORRECTIONS TO DPS CROSS SECTIONThe evolution equation for Γij 
onsists of two terms. The �rst termdes
ribes the independent (simultaneous) evolution of two bran
hes ofparton 
as
ade: one bran
h 
ontains the parton x1, and another bran
h� the parton x2.The se
ond term allows for the possibility of splitting one parton evolution(one bran
h k) into two di�erent bran
hes, i and j. It 
ontains theusual splitting fun
tion Pk→ij(z). The solutions of the generalized DGLAPevolution equations with the given initial 
onditions at the referen
es
ales µ2 may be written in the form:
Dj1j2

h (x1, x2; µ
2, Q2

1, Q2
2)

= Dj1j2
h1 (x1, x2; µ

2, Q2
1, Q2

2) + Dj1j2
h2 (x1, x2; µ

2, Q2
1, Q2

2)with

Dj1j2
h1 (x1, x2; µ

2, Q2
1, Q2

2)

=
∑

j1′j2′

1−x2
∫

x1

dz1

z1

1−z1
∫

x2

dz2

z2

Dj1
′j2′

h (z1, z2; µ
2)Dj1

j1′(
x1

z1

; µ2, Q2
1)D

j2
j2′(

x2

z2

, µ2, Q2
2)



and
Dj1j2

h2 (x1, x2; µ
2, Q2

1, Q2
2) =

∑

j′j1′j2′

min(Q2
1,Q2

2)
∫

µ2

dk2αs(k
2)

2πk2

1−x2
∫

x1

dz1

z1

1−z1
∫

x2

dz2

z2

×

Dj′
h (z1 + z2; µ

2, k2)
1

z1 + z2

Pj′→j1′j2′
( z1

z1 + z2

)

Dj1
j1′(

x1

z1

; k2, Q2
1)D

j2
j2′(

x2

z2

; k2, Q2
2)where αs(k2) is the QCD 
oupling,

Dj1
j1′(z; k

2, Q2) are the known single distribution fun
tions (the Green'sfun
tions) at the parton level with the spe
i�
 δ-like initial 
onditionsat Q2 = k2.

D
j′1,j

′
2

h (z1, z2, µ
2) is the initial (input) two-parton distribution at the relativelylow s
ale µ.The one parton distribution (before splitting into the two bran
hes atsome s
ale k2) is given by Dj′

h (z1 + z2, µ
2, k2).



The �rst term is the solution of homogeneous evolution equation (independentevolution of two bran
hes), where the input two-parton distribution isgenerally NOT known at the low s
ale µ. For this non-perturbative two-parton fun
tion at low z1, z2 one may assume the fa
torization Dj1
′j2′

h (z1, z2, µ
2) ≃

Dj1
′

h (z1, µ
2)Dj2

′
h (z2, µ

2) negle
ting the 
onstraints due to momentum 
onservation(z1 + z2 < 1).This leads to

Dij
h1(x1, x2; µ

2, Q2
1, Q2

2) ≃ Di
h(x1; µ

2, Q2
1)D

j
h(x2; µ

2, Q2
2)the fa
torization hypothesis usually used in 
urrent estimations.However, one should note that the input two-parton distribution Dj′1,j

′
2

h (z1, z2, µ
2)may be more 
ompli
ated than that given by fa
torization ansatz.



As a rule the multiple intera
tions take pla
e at relatively low transversemomenta and low x1,2, where the fa
torization hypothesis for the �rstterm is a good approximation.



In this 
ase the 
ross se
tion for double parton s
attering 
an be estimated,using the two-gluon form fa
tor of the nu
leon F2g(q) for the dominantgluon-gluon s
attering mode (or something similar for other parton s
atteringmodes)
σD,1×1

(A,B) =
m

2

∑

i,j,k,l

∫

Di
h(x1; µ

2, Q2
1)D

j
h(x2; µ

2, Q2
2)σ̂

A
ik(x1, x

′
1)σ̂

B
jl(x2, x

′
2)

×Dk
h′(x

′
1; µ

2, Q2
1)D

l
h′(x

′
2; µ

2, Q2
2)dx1dx2dx

′
1dx

′
2

∫

F 4
2g(q)

d2q

(2π)2
.From the dipole �t F2g(q) = 1/(q2/m2

g+1)2 it follows that the 
hara
teristi
value of q is of the order of �e�e
tive gluon mass� mg. Thus the initial
onditions for the single distributions 
an be �xed at some not largereferen
e s
ale µ ∼ mg, be
ause of the weak logarithmi
 dependen
e ofthese distributions on the s
ale value.In this approa
h

∫

F 4
2g(q)

d2q

(2π)2gives the estimation of [σeff]−1.



The se
ond term is the solution of 
omplete evolution equation with theevolution originating from one �nonperturbative� parton at the referen
es
ale. Here the independent evolution of two bran
hes starts at the s
ale

k2 from a point-like parton j ′.



In this 
ase, the large qt domain is NOT suppressed by the form fa
tor

F2g(q) and the 
orresponding 
ontribution to the 
ross se
tion reads

σD,2×2
(A,B) =

m

2

∑

i,j,k,l

∫

dx1dx2dx
′
1dx

′
2

min(Q2
1,Q2

2)
∫ d2q

(2π)2

∑

j′j1′j2′

min(Q2
1,Q2

2)
∫

q2

dk2αs(k
2)

2πk2

×
1−x2
∫

x1

dz1

z1

1−z1
∫

x2

dz2

z2

Dj′
h (z1 + z2; µ

2, k2)
1

z1 + z2

Pj′→j1′j2′
( z1

z1 + z2

)

×Di
j1′(

x1

z1

; k2, Q2
1)D

j
j2′(

x2

z2

; k2, Q2
2)σ̂

A
ik(x1, x

′
1)σ̂

B
jl(x2, x

′
2)

× ∑

j′j1′j2′

min(Q2
1,Q2

2)
∫

q2

dk
′2αs(k

′2)

2πk′2

1−x′
2

∫

x′
1

dz1

z1

1−z1
∫

x′
2

dz2

z2

Dj′
h′(z1 + z2; µ

2, k
′2)

× 1

z1 + z2

Pj′→j1′j2′
( z1

z1 + z2

)

Dk
j1′(

x′
1

z1

; k
′2, Q2

1)D
l
j2′(

x′
2

z2

; k
′2, Q2

2),



or in substantially shorter yet less transparent form:

σD,2×2
(A,B)

m

2

∑

i,j,k,l

∫

dx1dx2dx
′
1dx

′
2

min(Q2
1,Q2

2)
∫ d2q

(2π)2
Dij

h2(x1, x2; q
2, Q2

1, Q2
2)

×σ̂A
ik(x1, x

′
1)σ̂

B
jl(x2, x

′
2)D

kl
h′2(x

′
1, x′

2; q
2, Q2

1, Q2
2).By analogy, the 
ombined (�interferen
e�) 
ontribution may be writtenas

σD,1×2
(A,B) =

m

2

∑

i,j,k,l

∫

dx1dx2dx
′
1dx

′
2

min(Q2
1,Q2

2)
∫

F 2
2g(q)

d2q

(2π)2

×[Di
h(x1; µ

2, Q2
1)D

j
h(x2; µ

2, Q2
2)σ̂

A
ik(x1, x

′
1)σ̂

B
jl(x2, x

′
2)D

kl
h′2(x

′
1, x′

2; q
2, Q2

1, Q2
2)

+Dij
h2(x1, x2; q

2, Q2
1, Q2

2)σ̂
A
ik(x1, x

′
1)σ̂

B
jl(x2, x

′
2)D

k
h′(x

′
1; µ

2, Q2
1)D

l
h′(x

′
2; µ

2, Q2
2)].



The equations (above and below) present our solution of the problem �we obtain the estimation of the in
lusive 
ross se
tion for double partons
attering, taking into a

ount the QCD evolution and basing on the well-known 
ollinear distributions, extra
ted from deep inelasti
 s
attering:

σD
(A,B) = σD,1×1

(A,B) + σD,1×2
(A,B) + σD,2×2

(A,B)

Afterwards similar results were obtained also by Blok, Dokshitzer, Frankfurt, Strikmanwith an emphasis on the di�erential 
ross se
tions, then by Gaunt, Stirling (as
on
erning 1 × 1, 1 × 2 
omponents)
2 × 2 
omponent (double splitting diagrams ) is the subje
t of dis
ussionand our disagreement with Blok, Dokshitzer, Frankfurt, Strikman; Gaunt, Stirling;Manohar, Waalewijn, mainly in a terminology.



At a large �nal s
ale Q2 the 
ontribution of se
ond (2 × 2) 
omponentshould dominate being proportional to q2 ∼ Q2, while the 
ontributionsof the 1× 1 or 1× 2 
omponents ∼ m2
g ∼ 1/σeff are limited by the nu
leon(hadron) form fa
torF2g.In terms of impa
t parameters b this means that in the se
ond (2 × 2)term two pairs of partons are very 
lose to ea
h other; |b1 − b2| ∼ 1/Q.We have to emphasize that the dominant 
ontribution to the phase spa
eintegral 
omes from a large q2 ∼ Q2 and, stri
tly speaking, the abovereasoning makes no allowan
e for the 
ollinear (DGLAP) evolution of twoindependent bran
hes of the parton 
as
ade (i.e., in the ladders L1, L2, L1′and L2′) in the 2 × 2 term.Formally in the framework of 
ollinear approa
h this 
ontribution shouldbe 
onsidered as the result of intera
tion of one pair of partons with the

2 → 4 hard subpro
ess (Blok, Dokshitzer, Frankfurt, Strikman; Gaunt, Stirling;Manohar, Waalewijn).On the boundary of phase spa
e our formula reprodu
es naturally this result (2 → 4)due to the spe
i�
 δ-like initial 
onditions at k2 = Q2 for Green's fun
tions.



Re
all, however, that when estimating the phase spa
e integral we negle
tthe anomalous dimension, γ, of the parton distributions

Dk
j (x/z, k

2, Q2) ∝ (Q2/k2)γ. In 
ollinear approa
h the anomalous dimensions

γ ∝ αs << 1 are assumed to be small. On the other hand, in a low x regionthe value of anomalous dimension is enhan
ed by the ln(1/x) logarithmand may be rather large numeri
ally.So the integral over q2 is slowly 
onvergent and the major 
ontribution tothe 
ross se
tion is expe
ted to 
ome a
tually from some 
hara
teristi
intermediate region, m2
g << q2 << Q2

1 (Q1 < Q2).Thus we do not expe
t su
h strong sensitivity to the upper limit of q-integration as in the 
ase of the pure phase spa
e integral.Therefore it makes sense to 
onsider the quantitative 
ontribution of the

2 × 2 term even within the 
ollinear approa
h as applied to the LHCkinemati
s, where the large (in 
omparison with mg) available values of

Q1 and Q2 provide wide enough integration region for the 
hara
teristi
loop momenta q.



We demonstrate this fa
t by dire
t 
al
ulation in the double logarithmapproximation. Let us put down the all integrations with splitting fun
tionsseparately to make the analysis more transparent

Dij
h2(x1, x2; q

2, Q2
1, Q2

2) =
∑

j′j1′j2′

min(Q2
1,Q2

2)
∫

q2

dk2αs(k
2)

2πk2

1−x2
∫

x1

dz1

z1

1−z1
∫

x2

dz2

z2

×Dj′
h (z1 + z2; µ

2, k2)
1

z1 + z2

Pj′→j1′j2′
( z1

z1 + z2

)

Di
j1′(

x1

z1

; k2, Q2
1)D

j
j2′(

x2

z2

; k2, Q2
2).In the double logarithm approximation we 
an restri
t ourselves to thegluon main 
ontribution only and rewrite the integral under 
onsiderationin the following form

Dgg
h2(x1, x2; q

2, Q2
1, Q2

2) =
min(Q2

1,Q2
2)

∫

q2

dk2αs(k
2)

2πk2

∫ du

u2
Dg

h(u; µ2, k2)
∫ dz

z(1 − z)

×Pg→gg(z)Dg
g(

x1

uz
; k2, Q2

1)D
g
g









x2

u(1 − z)
; k2, Q2

2








.



The Green's fun
tions (gluon distributions at the parton level) in thedouble logarithm approximation read

xDg
g(x, t) ≃ 4Nctv

−3/2 exp [v − at]/
√

2π,

where

v =
√

8Nct ln (1/x), a = 11
6
Nc + 1

3
nf/N 2

c

t(Q2) =
2

β
ln

[ln(Q2

Λ2)

ln(µ2

Λ2)

]

,and where

β = (11Nc − 2nf)/3

nf is the number of a
tive �avors, Λ is the dimensional QCD parameter,

Nc = 3 is the 
olor number and the one-loop running QCD 
oupling

αs(Q
2) =

4π

β ln(Q2/Λ2)was used



After that the integral may be rewritten as

x1x2D
gg
h2(x1, x2; τ, T1, T2)

∼
min(T1,T2)

∫

τ
dt

∫

dzPg→gg(z)
∫

dy exp [
√

8Ncd(t, y, z)],

where

d(t, y, z) =
√

ty +
√

(T1 − t)(Y1 − y) +
√

(T2 − t)(Y2 − y)with

t = t(k2), T1 = t(Q2
1), T2 = t(Q2

2), τ = t(q2)and

y = ln(1/u), Y1 = ln(1/x1) − ln(1/z), Y2 = ln(1/x2) − ln(1/(1 − z)).

We keep the leading exponential terms only, whi
h have the same stru
tureboth at the parton level and at the hadron one under the smooth enoughinitial 
onditions at the referen
e s
ale.



We are interested in the domain with large enough T1, T2, ln(1/x1) and

ln(1/x2), when the exponential fa
tors are large in 
omparison with 1 andwhere the approximations above are justi�ed. In this 
ase the integrationover the rapidity y has the saddle point stru
ture in the wide interval of z-integration not near the kinemati
 boundaries. The saddle-point equationreads √
t

√
y0

−
√

(T1 − t)
√

(Y1 − y0)
−

√

(T2 − t)
√

(Y2 − y0)
= 0.It may be solved expli
itly in the simplest 
ase of the two hard s
alesset equal T1 = T2 = T and at Y1 ≃ Y2 ≃ Y = ln(1/x), i.e., in the z-region where ln(1/z) << ln(1/x) and ln(1/(1 − z)) << ln(1/x) (In spite ofthe large nonexponential fa
tor like ln(1/x) (due to the singularity of the splittingfun
tion Pg→gg(z)) the 
ontribution from the integration region near the kinemati
alboundaries z ∼ x and 1 − z ∼ x is not dominant, sin
e in this 
ase the obtainedexponential fa
tor exp [

√
8Nc

√

Y (T − τ )] is not leading).Then the saddle-point is equal to

y0 = Y t/(4T − 3t).



Thus, the splitting integrals redu
e to

x2Dgg
h2(x, x; τ, T, T ) ∼

T
∫

τ
dt

1−x
∫

x
dzPg→gg(z) exp [

√
8Nc

√

Y (4T − 3t)].

The t-integration is not a saddle-point type and therefore one of edges,namely t→ τ , dominates. That is
x2Dgg

h2(x, x; τ, T, T ) ∼ exp [
√

8Nc

√

Y (4T − 3τ )].

What follows from our estimation of splitting integrals in the doublelogarithm approximation by the saddle-point method ?



For single splitting diagrams (1 × 2 
ontribution)�������������the lower limit for the t-integration may be taken at the referen
e s
ale,i.e., τ = t(q2)|q=µ = 0 due to the strong suppression fa
tor F 2
2g(q). The
hara
teristi
 value of q being of the order of �e�e
tive gluon mass� mg ∼ µin the further q-integration. Thus one obtains for this 
ontribution thefollowing estimation

x2Dgg
h2(x, x; 0, T, T ) ∼ exp [

√
8Nc(

√
Y T +

√
Y T )].It means that the splitting takes pla
e in the �
hara
teristi
 point� withthe s
ale k2 
lose to µ2 and with the longitudinal momentum fra
tion

u ∼ 1 (the saddle-point y0 ∼ t ∼ τ ∼ 0 in this 
ase).After splitting one has the TWO independent ladders with the well-developed BFKL and DGLAP evolution. Every ladder 
ontributes to the
ross se
tion with the large exponential fa
tor, exp [
√

8Nc

√
Y T ], whi
h isjust the same as for single distributions.Therefore in the double logarithm approximation single splitting diagramshave, in fa
t, the fa
torization property if one takes the leading exponentialfa
tors into 
onsideration only.



For double splitting (2 × 2) diagrams�����������-the leading exponential 
ontribution arises from the lower limits of t- andeither lower or upper limits of q-integrations depending on the availablerapidity interval Y .There is 
ompetition between the exponential fa
tor 
aused by the evolution,whi
h prefers a small τ , and the phase spa
e fa
tor in q2-integral.Due to the non-logarithmi
 
hara
ter of the integration over d2q for a notsu�
iently large Y the 
ontribution from the upper limit of q may dominate.Indeed, let us 
onsider the produ
tion of two bb̄ pairs in a 
entral rapidity(η ∼ 0) region. That is we take T1 = T2 = T , Y1 = Y2 = Y and keep just theleading exponential fa
tors in the double parton distributions

x2Dh2(x, x, q2, Q2, Q2) ∼ exp(
√

8NcY (4T − 3τ ) − 2aT + aτ ).Thus the logarithmi
 dq2/q2 integral takes the form
∫ dq2

q2
exp(2

√

8NcY (4T − 3τ ) − 4aT + 2aτ )q2.
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The q-dependen
e of the integrand f(L) in the logarithmi
 s
ale
f(L) = exp

(

2
√

8NcY (4T − 3τ ) − 4aT + 2aτ
)
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
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



eβτ/2









with

L = ln(q2/Λ2) = ln(µ2/Λ2)eβτ/2



For the DPS produ
tion of two bb̄ pairs the major 
ontribution 
omesfrom a low q2 in the 
ase of Y = 5 
orresponding to the LHC energy√
s = 14 TeVThat is the rea
tion may be e�e
tively des
ribed by the 1 × 1 term; theformation of TWO parton bran
hes (one to two splitting) takes pla
emainly at low s
ales.However at the RHIC energy, when the available rapidity interval is notlarge (Y = 2), the q2-dependen
e is not steep and the 
ontribution 
ausedby the splitting somewhere in the mid of evolution is still not negligible.The same 
an be said about the DPS W -boson produ
tion at the LHC.Here the upper edge of the q2-integral dominates. This part may bedes
ribed as the 
ollision of one pair of partons supplemented by a more
ompli
ated, 2 → 4 or 2 → 2W , hard matrix element. However, 
learly weneed to a

ount also for 
ontributions from the whole q2-interval.



For the debatable double splitting diagrams,depending on the pre
ise kinemati
s, we may deal:

• either with a single parton pair 
ollision (times the 2 → 4 hard subpro
ess)in a

ordan
e with Blok, Dokshitzer, Frankfurt, Strikman;Gaunt, Stirling;Manohar,Waalewijn
• or with the 
ontribution of the 1 × 1 type where the formation of twoparton bran
hes (one to two splitting) takes pla
e at low s
ales

• or with the 2 × 2 
on�guration where the splitting may happenEVERYWHERE (with more or less equal probabilities) during theevolution.In order to probe the QCD evolution of the double distribution fun
tionsbetter we suggest also to investigate the pro
esses with two quite di�erents
ales, in parti
ular, produ
tion of a bb̄ pair (or J/ψ) with W , whi
hwas estimated at the LHC kinemati
al 
onditions using the fa
torized
omponent only.


