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QCD: QUARKS AND GLUONS

• keep in mind: we observe hadrons!

• quarks and gluons are DOF’s in perturbation theory!
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its fundamental equations (figure 1). You should not nec-
essarily be too impressed by that. After all, Richard Feyn-
man showed that you could write down the Equation of
the Universe in a single line: U = 0, where U, the total
unworldliness,3 is a definite function. It’s the sum of con-
tributions from all the laws of physics:

U = UNewton + UGauss + . . . ,

where, for instance, UNewton = (F – ma)2 and UGauss =
(∇!E – r)2.

So we can capture all the laws of physics we know,
and all the laws yet to be discovered, in this one unified
equation. But it’s a complete cheat, of course, because
there is no useful algorithm for unpacking U, other than
to go back to its component parts. The equations of QCD,
displayed in figure 1, are very different from Feynman’s
satirical unification. Their complete content is out front,
and the algorithms that unpack them flow from the
unambiguous mathematics of symmetry.

A remarkable feature of QCD, which we see in figure 1,
is how few adjustable parameters the theory needs. There
is just one overall coupling constant g and six quark-mass
parameters mj for the six quark flavors. As we shall see,
the coupling strength is a relative concept; and there are
many circumstances in which the mass parameters are
not significant. For example, the heavier quarks play only
a tiny role in the structure of ordinary matter. Thus QCD
approximates the theoretical ideal: From a few purely
conceptual elements, it constructs a wealth of physical
consequences that describe nature faithfully.4

Describing reality
At first sight it appears outrageous to suggest that the
equations of figure 1 or, equivalently, the pictures in the
box, can describe the real world of the strongly interacting
particles. None of the particles that we’ve actually seen
appear in the box, and none of the particles that appear in
the box has ever been observed. In particular, we’ve never
seen particles carrying fractional electric charge, which
we nonetheless ascribe to the quarks. And certainly we
haven’t seen anything like gluons—massless particles
mediating long-range strong forces. So if QCD is to
describe the world, it must explain why quarks and glu-
ons cannot exist as isolated particles. That is the so-called
confinement problem.

Besides confinement, there is another qualitative dif-
ference between the observed reality and the fantasy
world of quarks and gluons. This difference is quite a bit
more subtle to describe, but equally fundamental. I will
not be able to do full justice to the phenomenological argu-
ments here, but I can state the essence of the problem in
its final, sanitized theoretical form. The phenomenology
indicates that if QCD is to describe the world, then the u
and d quarks must have very small masses. But if these
quarks do have very small masses, then the equations of
QCD possess some additional symmetries, called chiral
symmetries (after chiros, the Greek word for hand). These
symmetries allow separate transformations among the
right-handed quarks (spinning, in relation to their
motion, like ordinary right-handed screws) and the left-
handed quarks.

But there is no such symmetry among the observed
strongly interacting particles; they do not come in oppo-
site-parity pairs. So if QCD is to describe the real world,
the chiral symmetry must be spontaneously broken,
much as rotational symmetry is spontaneously broken in
a ferromagnet.

Clearly, it’s a big challenge to relate the beautifully

simple concepts that underlie QCD to the world of
observed phenomena. There have been three basic
approaches to meeting this challenge:
! The first approach is to take the bull by the horns and
just solve the equations. That’s not easy. It had better not
be too easy, because the solution must exhibit properties
(confinement, chiral-symmetry breaking) that are very
different from what the equations seem naively to sug-
gest, and it must describe a rich, complex phenomenology.
Fortunately, powerful modern computers have made it
possible to calculate a few of the key predictions of QCD
directly. Benchmark results are shown in figure 2, where
the calculated masses5 of an impressive range of hadrons
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QED and QCD in Pictures.

The physical content of
quantum electrodynam-

ics is summarized in the
algorithm that associates a
probability amplitude with
each of its Feynman graphs,
depicting a possible process
in spacetime. The Feynman
graphs are constructed by
linking together interaction
vertices of the type at left,
which represents a point

charged particle (lepton or quark) radiating a photon. To
get the amplitude, one multiplies together a kinematic
“propagator” factor for each line and an interaction factor
for each vertex. Reversing a line’s direction is equivalent to
replacing a particle by its antiparticle.

Quantum chromodynamics can be similarly summa-
rized, but with a more elaborate set of ingredients and ver-
tices, as shown below. Quarks (antiquarks) carry one pos-
itive (negative) unit of color charge. Linear superpositions
of the 9 possible combinations of gluon colors shown
below form an SU(3) octet of 8 physical gluon types.

A qualitatively new feature of QCD is that there are
vertices describing direct interactions of color gluons with
one another. Photons, by contrast, couple only to electric
charge, of which they carry none themselves.

g

QED

3 colors

6 flavors
(u, d, s, c, b, t)

Makes
life
interesting

QCD
Quarks Gluons

Vertices

:: large-Nc diagrams



K. Tywoniuk (CERN)

HARD PROBES

• there is a hard scale in the problem: Q≫𝛬QCD

- separation of long and short-distance 
processes

- uncertainty principle (𝞓p𝞓x = 1)

4

size ~ momentum-1

Formation time: tf =
1

Q

E

Q
=

E

Q2

life-time in particle rest frame boost to lab frame
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COUPLING: ASYMPTOTIC FREEDOM

• QCD is weakly coupled at small 
distances — strongly coupled at 
large distances

- “free” particles at short 
distances!

- gluons & quarks

• can use perturbation theory 
when there is a large scale in the 
problem

• unfortunately, in many interesting 
situations this is not the case…

5

↵s =
g2

4⇡
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DIFFERENT COLLISION SYSTEMS
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g

• factorisation theorems: 
separation of long- and 
short-distance processes

• hard physics: jets, heavy 
quarks, etc.

• soft physics: diffraction, 
underlying event

• collective phenomena?
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QCD FACTORISATION
• hadron production
• separation of processes

- short-distance (perturbative)
- long-distance (non-perturbative)

- universal distributions
• hard matrix element
• corrections suppressed ~1/Q2
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p
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parton distribution functions fragmentation function

we don’t know how to compute PDF’s/FF’s!
but we know how to evolve perturbatively!
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ELECTRON-POSITRON COLLISIONS
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Q?? calculating quarks, but measure hadrons?

•short collision time
•hadronisation effects suppressed as O(m2/s)

tcoll � 1
�⇥

s

thadr �
⇥
s/m2

p1

p2

q

k1

k2

e−

e+

q, µ−

q̄, µ+
γ
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RADIATIVE CORRECTIONS

• next gluon emission — next order in 𝛼s

• virtual and real emission contributions are 
separately IR divergent!
- divergences cancel when summing the two
- happens always for inclusive observables

10
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49. Plots of cross sections and related quantities 5

σ and R in e+e− Collisions
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Figure 49.5: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)

R = Nc

X

f

Q2
f

h
1 +

↵s

⇡

i 2 if Q≲3 GeV
R(0) 3⅓ for 3 GeV≲Q≲10 GeV 

3⅔ for 10 GeV≲Q

need to include
e+e-→Z→qq̅



PART 𝟙) QCD RADIATION



K. Tywoniuk (CERN)

• these lectures will deal with “real” emissions

- in vacuum

- in medium

- how to deal with interference effects and re-
sum multiple radiation

• aim: to know the fundamental splitting 
processes & establish a probabilistic picture

- calculate jet spectra + other observables

13
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GLUON EMISSION

• apparently suppressed by two 
additional power of the coupling 
constant (in the cross section)
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iM = ū(p)iMh

�
gta

�p · "(k)
p · k

E, p⊥

xE, k⊥

(1− x)E, p⊥ − k⊥⇒ ⊗



K. Tywoniuk (CERN) 16

(2⇡)3(2k+)
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dN
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Calculating the cross section:

average over: incoming (quark) color
sum over: outgoing spin and polarisation

Exercise I) show that
dN

dk+ d2k
=

↵s

⇡2
CF

1

k+
1

k2

Exercise II) use the uncertainty principle to calculate the duration 
of the q→q+g splitting process
HINT: use three-momentum conservation!
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SOLUTION: EXERCISE II)
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Small-angle approx:
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splitting function
2
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Soft divergence: 𝒙→0
Collinear divergence: 𝜗→0

Proportional to colour factor & coupling constant
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• smallness of the coupling constant compensated by 
large phase space

- double-logarithmic approximation

- further improvements will include single-log 
contributions

19
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MULTI-GLUON EMISSIONS

• soft & collinear emissions: need to consider emissions of 
multiple gluons

• can we simply reiterate single-emission formula?
- for photons in QED: yes!
- for gluons in QCD: not so fast!
- there are interferences!

21
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CURRENT

22

J a,µ
i (k) = gQa

i
pµi
p · k

Defining a current:
proportional to the colour 
charge of the emitter

iM = ū(p)iMh

�
gta

�p · "(k)
p · k E, p⊥

xE, k⊥

(1− x)E, p⊥ − k⊥⊗

factorisation!
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propagator parts later if we need to — which we won’t):

Mqq̄ = ūa(p1)ieqγµδabvb(p2)

p1

p2

 ie ! µ
,

where the diagram illustrates the momentum labelling. Here ū(p1) and v(p2) are the spinors for the
outgoing quark and anti-quark (taken massless), eq is the quark’s electric charge and the γµ are the Dirac
matrices. In what follows we shall drop the a, b quark colour indices for compactness and reintroduce
them only at the end.

The corresponding amplitude including the emission of a gluon with momentum k and polarization
vector ϵ is

Mqq̄g =
k ,"

 ie  ! µ

p1

p2

+
k ,"

 ie  ! µ

p1

p2

(12a)

= −ū(p1)igs /ϵt
A i( /p1 + /k)

(p1 + k)2
ieqγµv(p2) + ū(p1)ieqγµ

i( /p2 + /k)

(p2 + k)2
igs /ϵt

Av(p2) , (12b)

with one term for emission from the quark and the other for emission from the anti-quark and use of

the notation /p = pµγµ. Let’s concentrate on the first term, collecting the factors of i, and using the
anti-commutation relation of the γ-matrices, /A /B = 2A.B − /B /A, to write

iū(p1)gs /ϵt
A ( /p1 + /k)

(p1 + k)2
eqγµv(p2) = igsū(p1)

[2ϵ.(p1 + k)− ( /p1 + /k)/ϵ]

(p1 + k)2
eqγµt

Av(p2) , (13a)

≃ igs
p1.ϵ

p1.k
ū(p1)eqγµt

Av(p2) , (13b)

where to obtain the second line we have made use of the fact that ū(p1) /p1 = 0, p21 = k2 = 0, and
taken the soft approximation kµ ≪ pµ, which allows us to neglect the terms in the numerator that are
proportional to k rather than p. The answer including both terms in Eq. (12) is

Mqq̄g ≃ ū(p1)ieqγµt
Av(p2) · gs

(
p1.ϵ

p1.k
−

p2.ϵ

p2.k

)

, (14)

where the first factor has the Lorentz structure of theMqq̄ amplitude, i.e., apart from the colour matrix

tA, Mqq̄ is simply proportional to theMqq̄ result. We actually need the squared amplitude, summed

over polarizations and colour states,

|Mqq̄g|2 ≃
∑

A,a,b,pol

∣
∣
∣
∣
ūa(p1)ieqγµt

Avb(p2) gs

(
p1.ϵ

p1.k
−

p2.ϵ

p2.k

)∣
∣
∣
∣

2

= −|M2
qq̄|CF g

2
s

(
p1
p1.k

−
p2
p2.k

)2

= |M2
qq̄|CF g

2
s

2p1.p2
(p1.k)(p2.k)

. (15)

We have now explicitly written the quark colour indices a, b again. To obtain the second line we

have made use of the result that
∑

A,a,b t
A
abt

A
ba = CFNC [cf. Eq. (8b)], whereas for |M2

qq̄| we have
∑

A,a,b δabt
A
ba = NC . To carry out the sum over gluon polarizations we have exploited the fact that

∑

pol ϵµ(k)ϵ
∗
ν(k) = −gµν , plus terms proportional to kµ and kν that disappear when dotted with the

amplitude and its complex conjugate.

One main point of the result here is that in the soft limit, the |Mqq̄g|2 squared matrix element
factorizes into two terms: the |Mqq̄|2 matrix element and a piece with a rather simple dependence on the
gluon momentum.
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i( /p2 + /k)

(p2 + k)2
igs /ϵt

Av(p2) , (12b)

with one term for emission from the quark and the other for emission from the anti-quark and use of

the notation /p = pµγµ. Let’s concentrate on the first term, collecting the factors of i, and using the
anti-commutation relation of the γ-matrices, /A /B = 2A.B − /B /A, to write
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amplitude and its complex conjugate.

One main point of the result here is that in the soft limit, the |Mqq̄g|2 squared matrix element
factorizes into two terms: the |Mqq̄|2 matrix element and a piece with a rather simple dependence on the
gluon momentum.

9

iMqq̄g = iMqq̄ J12(k) · "(k)

J µ
12(k) = gQa

1
pµ1

p1 · k
+ gQa

2
pµ2

p2 · k

Emission off two quarks is simply a sum:
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COLOUR CHARGE ALGEBRA
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pi = (p+i , p
�
i ,pi) k = (k+, k�,k)

P(0)
(k) ⌘

X

�

�

�

�

M(0)
�

�

�

�

2
= 4g2

✓

q̃21
1



2
1

+ q̃22
1



2
2

+ 2q̃1 · q̃21 · 2



2
1

2
2

◆

,

i ⌘ k � zipi ,

zi ⌘ k+/p+i

Qa
1

Qa
2 Qa

1 +Qa
2 = Qa

3 Q2
3 ⌘ Qa

3 ·Qa
3

Q2
q = CF

Q2
g = CA CF = (N2

c � 1)/(2Nc) CA = Nc

Q1 · Q2 = (Q2
3 �Q2

1 �Q2
2)/2 1 ! 2

Q2
1 = Q2

2 = CF Q2
3 = CA g ! q + q̄ ,

Q2
1 = Q2

2 = Q2
3 = CA g ! g + g ,

Q2
1 = Q2

3 = CF Q2
2 = CA q ! q + g .

A

a
1 ⌘ Qa

1
1 � q

(1 � q)

2 ,

B

a
1 ⌘ Qa

1
1



2
1

,

A

a
B

a

a

Qa
1 +Qa

2 = Qa
3conservation of colour charge

Q2
q = CF

Q2
g = CA

quark colour charge
gluon colour charge

2

Q2
1 +Q2

1 + 2Q1 · Q1 = Q2
3 Q1 · Q1 =

1

2

�
Q2

3 �Q2
1 �Q2

1

�⇒22 22
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J · " = J? · "

J12,? =
2

k+


Qa

1
vk � v1

(vk � v1)2
+Qa

2
vk � v2

(vk � v2)2

�

vk ⌘ k/k+

v2
k = 1

J12,?|v1=v2
=

2

k+
vk � v1

(vk � v1)2
[Qa

1 +Qa
2 ]

The current is transverse:

If p1→p2, or 𝝑0→0, does the current vanish?

{
Qa

1 +Qa
2 = Qa

3

(see Exercise I)

Not unless
colour cancels!
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|Mqq̄g|2 = |Mqq̄|2
X

�

J12,? · "� (J12,? · "�)⇤

= |Mqq̄|2 |J12,?|2

X

�

"i�"
j
� = �ij
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|Mqq̄g|2 = |Mqq̄|2
X

�

J12,? · "� (J12,? · "�)⇤

= |Mqq̄|2 |J12,?|2

X

�

"i�"
j
� = �ij

|J12,?|2 =
4

(k+)2


Q2

1

(vk � v1)2
+

Q2
2

(vk � v2)2
+ 2Q1 · Q2

(vk � v1) · (vk � v2)

(vk � v1)2(vk � v2)2

�

Q1 · Q2 =
�
Q2

3 �Q2
1 �Q2

2

�
/2

=
1

(k+)2
⇥
Q2

1P1 +Q2
2P2 +Q2

2I12
⇤

3
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|Mqq̄g|2 = |Mqq̄|2
X

�
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X

�

"i�"
j
� = �ij
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4
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
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�
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3 �Q2
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⇥
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Coherent spectrum
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�
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3

Pi = Ri � I12

=
4

(vk � vi)2


1� (vk � v1) · (vk � v2)

(vk � v2)2

�

Coherent spectrum
Ri =

4

(vk � vi)2

I12 = 4
(vk � v1) · (vk � v2)

(vk � v1)2(vk � v2)2

Independent & interference
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(vk � vi)
2
= 2(1� vk · vi)

= 2(1� cos

ˆ✓i)

= 2ai

Notation: angles
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(vk � vi)
2
= 2(1� vk · vi)

= 2(1� cos

ˆ✓i)

= 2ai

P1 =

1

a1

✓
1� a1 � a12

a2

◆
!

⇢
1 for a1 ! 0 (a12 ! a2)
0 for a2 ! 0 (a12 ! a1)

Coherent spectrum: diverges only in the direction of quark 1 

Notation: angles
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(vk � vi)
2
= 2(1� vk · vi)

= 2(1� cos

ˆ✓i)

= 2ai

P1 =

1

a1

✓
1� a1 � a12

a2

◆
!

⇢
1 for a1 ! 0 (a12 ! a2)
0 for a2 ! 0 (a12 ! a1)

Coherent spectrum: diverges only in the direction of quark 1 

Notation: angles

Z 2⇡

0

d'

2⇡
P1 =

2

1� cos ✓1
⇥

�
✓12 � ✓1

�
Exercise IV) put quark 1 on the z-axis and prove that
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(vk � vi)
2
= 2(1� vk · vi)

= 2(1� cos

ˆ✓i)

= 2ai

P1 =

1

a1

✓
1� a1 � a12

a2

◆
!

⇢
1 for a1 ! 0 (a12 ! a2)
0 for a2 ! 0 (a12 ! a1)

Coherent spectrum: diverges only in the direction of quark 1 

Notation: angles

Z 2⇡

0

d'

2⇡
P1 =

2

1� cos ✓1
⇥

�
✓12 � ✓1

�
Exercise IV) put quark 1 on the z-axis and prove that

dNq

dx d✓
=

2↵sCF

⇡

1

x

1

✓

⇥
�
✓0 � ✓

�
Coherent

dNq

dx d✓
=

2↵sCF

⇡

1

x

1

✓

Independent

⇒
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ANGULAR ORDERING

• interference effects = coherence 
limit phase space of emissions

• antenna grows during formation 
time

• if gluon is “too big” :: doesn’t 
resolve the individual charges of 
the antenna, resolves total charge

• if gluon is “small” :: resolves the 
individual charges

27

dNq

dx d✓
=

2↵sCF

⇡

1

x

1

✓

⇥
�
✓0 � ✓

�

⇥� � 1

k�
=

1

⇤�
r� � �0tf =

�0
⇥�2

⇥� < r� � � < �0



K. Tywoniuk (CERN)

COLOUR CHARGED ANTENNA

28

!"#$%&'("()(*+$#(,"-./"+01(*(2+("3*0%"41("

567*8972:567*8"724(227"

;<*0%"=7#$+#"03"&(*46*>7:?("-./@"/08#1$4A(*@"B10A(@"C6(''(*@"D*0E72"FGHHGIJ""

large-angle emissions 
are restored with the 

total charge!

|Jg!qq̄,?|2 =
1

(k+)2
[CFP1 + CFP1 + CAI12]

total charge = gluon charge!
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COLOUR CHARGED ANTENNA

28

!"#$%&'("()(*+$#(,"-./"+01(*(2+("3*0%"41("

567*8972:567*8"724(227"
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large-angle emissions 
are restored with the 

total charge!

⇥
dNg

d⇥d2k�
⇥ �sCF

k2�
+ (q � q̄)

� � �qq̄ (k� � ⇥�qq̄)

Small angles: quarks

|Jg!qq̄,?|2 =
1

(k+)2
[CFP1 + CFP1 + CAI12]

total charge = gluon charge!
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COLOUR CHARGED ANTENNA
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large-angle emissions 
are restored with the 

total charge!

⇥
dNg

d⇥d2k�
⇥ �sCF

k2�
+ (q � q̄)

� � �qq̄ (k� � ⇥�qq̄)

Small angles: quarks

|Jg!qq̄,?|2 =
1

(k+)2
[CFP1 + CFP1 + CAI12]

total charge = gluon charge!

⇥
dNg

d⇥d2k�
� �sCA

k2�

� � �qq̄ (k� � ⇥�qq̄)

Large angles: gluon
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M� = E�jet

Q0 � �QCD

Global jet scales

Θjet

M� Q0 � �QCD
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SPLITTING PROBABILITY

31

dNq

dx d✓
=

2↵sCF

⇡

1

x

1

✓

⇥
�
✓0 � ✓

�

CF
1 + z2

1� z

P qg
q

1

2
(z2 + (1� z)2)

P qq̄
g

2CA
(1� z(1� z))2

z(1� z)

P gg
g

Altarelli-Parisi splitting functions (z=1-x)

dPBC
A =

↵s

⇡
PBC

A (z)dz
d✓

✓
⇥(✓0 � ✓)

�A(✓0, ✓) = exp

"
�
Z ✓0

✓
d✓0

Z 1

0
dz

X

B,C

dPBC
A

#
Sudakov form factor :
probability of no splitting

for now we will only consider gluon branching!
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GAIN & LOSS TERMS

32

ω = xE

D

zE

(1− z)E

θ

ω = xE

D

d

dM�
D(x,M�) = +

� = x/z

Loss term :: in course of a 
branching, the distribution 
of particles at x and zE is 

depleted by a splitting 
(virtual contribution)

Gain term :: particle formed 
within a sub-jet of energy E’=zE 

and scale k’⊥=zEθ, whose 
distribution is probed at ξ

�DG =
�M?
M?

Z 1

x

dz
↵

2⇡
P (z)D

⇣
x

z

, zM?

⌘

�DL = ��M?
M?

D (x,M?)

Z
x

0
dz

↵

2⇡
P (z)

𝛿
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QCD EVOLUTION EQUATION

• coherent evolution: angular ordering
- Double-Log Approximation
- Modified Leading-Log Approximation

• resulting distribution has a maximum
- suppression of the yield of soft particles

• similar to conventional DGLAP equation (which does 
not have angular ordering built in)

33

k� = z(1� z)M�

M?
d

dM?
D(x,M?) =

Z 1

x

dz
↵(k?)

2⇡
P (z)


D

⇣
x

z

, zM?

⌘
� 1

2
D(x,M?)

�
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8 20. Fragmentation functions in e
+

e
−, ep and pp collisions

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6
ξ=ln(1/xp)

1/
σ

 d
σ

/d
ξ

ZEUS* 10-20 GeV2
H1*      12-100 GeV2
ZEUS* 40-80 GeV2
ZEUS* 80-160 GeV2
H1*      100-8000 GeV2

DIS:
TASSO 22 GeV
TASSO 35 GeV
TASSO 44 GeV
TOPAZ 58 GeV
LEP 91 GeV
LEP 133 GeV
LEP 189 GeV
LEP 206 GeV

e+e−:

Figure 20.4: Distribution of ξ = ln(1/xp) at several CM energies (e+e−)
[26–28,33–36,41,74–77] and intervals of Q2 (DIS) [57,58]. At each energy only
one representative measurement is displayed. For clarity some measurements at
intermediate CM energies (e+e−) or Q2 ranges (DIS) are not shown. The DIS
measurements (∗) have been scaled by a factor of 2 for direct comparability with
the e+e− results. Fits of simple Gaussian functions are overlaid for illustration.

The predicted energy dependence Eq. (20.10) of the peak in the ξ distribution
is explained by soft gluon coherence (angular ordering) which correctly predicts the
suppression of hadron production at small x. Of course, a decrease at very small x
is expected on purely kinematical grounds, but this would occur at particle energies
proportional to their masses, i.e., at x ∝ m/

√
s and hence ξ ∼ 1

2 ln s. Thus, if the
suppression were purely kinematic, the peak position ξp would vary twice as rapidly with
the energy, which is ruled out by the data in Fig. 20.5. The e+e− and DIS data agree
well with each other, demonstrating the universality of hadronization, and the MLLA
prediction. Measurements of the higher moments of the ξ distribution in e+e− [41,77–79]
and DIS [58] have also been performed and show consistency with each other.

The average charged particle multiplicity is another observable sensitive to fragmenta-
tion functions for small particle momenta. Perturbative predictions using both NLO [88]
and MLLA [89,91] have been obtained from solving Eq. (20.4) yielding

〈

nG(Q2)
〉

∝ αb
S(Q2) · exp

[

c

4πb0
√

αS(Q2)
·
(

1 + 6a2
αS(Q2)

π

)

]

(20.11)
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−, ep and pp collisions 9
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DIS:
BES
TASSO
MARK II
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CELLO
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OPAL

e+e−:

MLLA QCD, αS(M2
Z)=0.118

Figure 20.5: Evolution of the peak position, ξp, of the ξ distribution with the CM
energy

√
s. The MLLA QCD prediction using αS(s = M2

Z) = 0.118 is superimposed
to the data of Refs. [26,28,29,32–34,36,41,56,57,75,76,79–87].

where b =
1

4
+

10

27

nf

4πb0
, c =

√
96π, with b0 = (33 − 2nf )/(12π), cp. Section 9 of this

Review, for nf contributing quark flavours. Higher order corrections to Eq. (20.11) are
known up to next-to-next-to-next-to-leading order (3NLO), for details and references
see [92]. The term proportional to a2 ≈ −0.502 + 0.0421 nf − 0.00036 n2

f in Eq. (20.11)

is the contribution due to NNLO corrections [93]. The quantity ⟨nG(Q2)⟩ strictly refers
to the average number of gluons, while for quarks a correction factor r = ⟨nG⟩/⟨nq⟩
weakly depending on Q2 is required due to the different colour factors in quark and gluon
couplings, respectively. Higher order corrections up to 3NLO on the asymptotic value
r = CA/CF = 9/4 [94] are quoted in [92].

Employing the hypothesis of ‘Local Parton-Hadron Duality’ (LPHD) [89], Eq. (20.11)
can be applied to describe average charged particle multiplicities obtained in e+e−

annihilation. The equation can also be applied to e±p scattering if the current
fragmentation region of the Breit frame is considered for measuring the average charged
particle multiplicity. Fig. 20.6 shows corresponding data and fits of Eq. (20.11) where
apart from a LPHD normalization factor a constant offset has been allowed for, that is
⟨nch(Q)⟩ = KLHPD · ⟨nG(Q)⟩/r + n0.

In hadron-hadron collisions beam remnants, e.g. from single-diffractive (SD) scattering,
contribute to the measurement of the hadron multiplicity from a hard parton-parton
scattering, making interpretation of the data more model dependent. Experimental
results are usually given for inelastic processes or for non-single diffractive processes
(NSD). Due to the large beam particle momenta at Tevatron and LHC, not all final state
particles can be detected within the limited detector acceptance. Therefore, experiments
at Tevatron and LHC quote particle multiplicities for limited ranges of pseudo-rapidity
η = − ln tan(ϑ/2) or at central rapidity, i.e. η = 0, shown in Fig. 20.6.

An universality of the average particle multiplicities in e+e− and p(p) processes has

August 21, 2014 13:17

softhard

“Humpbacked” plateau

Interjet distribution: soft particles in the jet

position of the peak
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A GLIMPSE OF THE QGP

37

weakly-coupled strongly-coupled

Simplest case g≪1 (mostly perturbative)
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IN THE MEDIUM

38

1. Momentum broadening

hk2?i ⇠ q̂t

Yacine Mehtar-Tani                                                      /28                                    Heavy-Ion Jet Workshop 2016

Coupling to the medium 

• The jet couples to the medium via (local) transport coefficients

9

q̂ � m2
D

�
�

(Debye mass)2

mean free path

L

• Weak coupling: 
Independent multiple 
scattering approximation

correlation length  ≪  mean-free-path ≪ L 

m�1
D

�

pt-broadening

ê � q̂

T
collisional energy loss (drag) ��E�coll � ê L

�k2
�� � q̂ L

[Baier, Dokshitzer, Mueller, Peigné, Schiff (1995-2000)]

[Majumder (2008)]

m�1
D ⇠ 1/(gT )

� ⇠ 1/(g2T )
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• The jet couples to the medium via (local) transport coefficients
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⇒ medium 
scattering 

center

2. Color rotations 
⇓

decoherence

m�1
D ⇠ 1/(gT )

� ⇠ 1/(g2T )
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EIKONAL INTERACTIONS

39

• conservation of energy 
during scattering
• elastic energy loss can 

be neglected at high 
energies 

• no spin-flip or change of 
polarisation

• color precession

spin

polarization

Ab,ν(p′ − p)

εiµ(p) ε∗,jη (p′)

Ab,ν(p′ − p)

uλ(p) ūλ′(p
′)

' (igs)(2p
+)��,�

0
t

aAa(x+
, q)

' gs(2p
+)��,�

0
f

abcAc(x+
, q)
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during scattering
• elastic energy loss can 

be neglected at high 
energies 

• no spin-flip or change of 
polarisation

• color precession

spin

polarization

Ab,ν(p′ − p)

εiµ(p) ε∗,jη (p′)

Ab,ν(p′ − p)

uλ(p) ūλ′(p
′)

' (igs)(2p
+)��,�

0
t

aAa(x+
, q)

' gs(2p
+)��,�

0
f

abcAc(x+
, q)

boost

⇒

⇒
⚆⚆

p+ � |q| � q+

A

a,µ(x)
A

a,� ⌘ Aa(x+
,x)
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WILSON LINES
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U(x

+
1 , x

+
0 ;x) = P exp

"
ig

s

Z
x

+
1

x

+
0

ds T · A(s,x(s))

#

𝞦 𝞦 𝞦 𝞦 𝞦 𝞦 𝞦

colour matrix: describes colour rotation 
taking place from initial to final point

a b

ab (Tc)ab=i facb

gluon probe:

i j

ij (Ta)ij=taij

quark probe:
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40

U(x

+
1 , x

+
0 ;x) = P exp

"
ig

s

Z
x

+
1

x

+
0

ds T · A(s,x(s))

#

𝞦 𝞦 𝞦 𝞦 𝞦 𝞦 𝞦

colour matrix: describes colour rotation 
taking place from initial to final point

a b

ab (Tc)ab=i facb

gluon probe:

i j

ij (Ta)ij=taij

quark probe:

𝞦 𝞦 𝞦 𝞦 𝞦 𝞦 𝞦
𝞦𝞦𝞦𝞦𝞦𝞦𝞦 S(x� y) ⇠ U(x)U†(y)

for physical processes: colour singlet

S(0) = 1normalisation 
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BROADENING
• Green’s function for propagation in the medium

- EOM  Schrödinger’s equation in 2D

• solution in form of a path integral
- accounts for fluctuations around the eikonal 

path

41

G(x, t;x0, t0) =

Z
r(t)=x

r(t0)=x0

Dr exp
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2
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ds ˙
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2
(s)

�
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=
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⇢Z t
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i
E

2

˙

r

2
(s) + igsT · A

�
s, r(s)

���


i
@

@t
+

@

2

2E
+ gA(t,x)

�
G(x, t;x0, t0) = i�(t� t0)�(x� x0)
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MEDIUM AVERAGES
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medium average:
transport coefficient

1

N

2
c � 1

trhU(0)U

†
(x)i ⇠ exp


�1

4

Z
ds q̂(s)x

2
(x)

�
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medium average:
transport coefficient

1

N

2
c � 1

trhU(0)U

†
(x)i ⇠ exp


�1

4

Z
ds q̂(s)x

2
(x)

�

Pµ

P · A Ai

A�

p+

q q+

q

q+ ⇡ 0

A�
(Q) ⌘ taAa,�

(Q) = 2⇡�(q+)

Z

dx+eiq
�x+ A(x+; q) ,

A⇤
(x+; q) = A(x+;�q)

hAa
(x+; q)A⇤ b

(x0+; q

0
)i = �abm2

Dn(x+) �(x+ � x0+) (2⇡)

2�(q � q

0
)V(q) ,

n(x+) x+

n0 L n(x+) = n0⇥(L� x+)

x+

x+ V(q)

µD

x+

N = 1

↵sn0L ⌧ 1

N = 1

V(q) ⇠ q�4

Medium potential:
q�4 ! (q2 +m2

D)
�2

q�4 ! q�2(q2 +m2
D)

�1

Yukawa screening

Hard-Thermal-Loop screening
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medium average:
transport coefficient
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N = 1
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V(q) ⇠ q�4
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RADIATIVE PROCESSES IN THE MEDIUM

• additional radiation from                  
interactions with the medium

• in vacuum: radiation due to off-shellness
- hard process accelerates the particle to the 

speed of light

• in medium: an on-shell quark/gluon can radiate
- transverse momentum of emitted gluon 

from accumulated kicks in the medium

• for jet quenching: accelerate a particle through 
a QGP!

44

E, p⊥

xE, k⊥

(1− x)E, p⊥ − k⊥p
k

i

(p+ k)2
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• Radiation triggered by multiple 
scatterings

10

tf =
�

k2
�

�

�
�

q̂

formation time

In-medium radiation mechanism (LPM effect)

• Landau-Pomeranchuk-Migdal 
suppression (coherent radiation)  

�
dN

d�
= �s

L

tf
� �sNeff

• Maximum suppression when                  ⇒    � > �c = q̂L2

[Baier, Dokshitzer, Mueller, Peigné, Schiff (1995-2000)  Zakharov (1996)]
[Wiedemann (2001)  Arnold, Moore,Yaffe (2002)]

tf � L

� > �c � 1/
�

q̂L3• Minimum radiation angle

• every internal vertex appears with an explicit integration over time.

• the hard vertex, represented by a hard amplitude, enforces the initial time to be located at t = 0.

5. Amplitudes

5.1. Connection to the hard vertex

Deriving the propagators above, we have explicitly taken advantage of the fact that the spinors are not
singular in p

�. This allows us to enforce conservation of p+- and p-momenta. Furthermore, all “internal”
vertices are devoid of any phases except the ones absorbed into the propagators. One exception is for the
propagator that enters the Cutkosky cut, as described above. Another exception is the treatment of the
hard vertex that produces the initial hard parton.

When gluing to the full amplitude, we want to be oblivious to what happens at Born leve. E.g., for
the production of a quark that experiences multiple scattering we would write the amplitude

M(p
1
, p

0
) =

1

2E0
2⇡�(E0 � E1) exp


i

p

2
1

2E0
t

L

� Z 1

0
dt0 G(p1, tL; p0, t0|E0)e

�i

P
p

�
INt0M(0)(p

0
,

X
pIN) . (82)

We set the lower limit of the t0-integral to 0 in order to avoid any contributions from advanced propagators.
The additional phase factor related to the initial position t0 appears from the momentum conservation
and depends on all the incoming particles, since p

�-momentum is not conserved. With
P

p

�
INt0 � 1

forces the initial time to be close to 0.

5.2. Gluon emission o↵ a quark

In order to put the Feynman diagrams listed previously to use, we also have to define how to glue
the propagators to the amplitude of the hard vertex. Since the process that creates the particle we are
interested in is supposed to be very hard, the time-scale related to it is vanishingly small. In the simplest
case, e.g., for the production of a single quark propagating in the medium, we simply can fix the initial
time to t0 = 0 and multiply by the amplitude for the hard vertex (which only depends the energy and
transverse momentum of the initial particle).

Consider as a concrete example the emission of a gluon, with energy and transverse momentum
{! ⌘ zE,k}, o↵ a quark, with correspondingly {E,p}, in the medium. Using the Feynman rules derived
in ??, the amplitude reads

M(a,i)
(�,s)(p, k) =

Z

k

0
,p

0
,p0

Z 1

0
dtG(k, L; k0

, t|zE)ab
1

2E

⇥ ⇥G(p, L; p0 � k

0
, t|(1 � z)E)V b

�,s,s

0(k0 � zp

0
, z)G(p0

, t; p0, 0|E)
⇤
ij Mj

s

0(p0) . (83)

We are focusing here on the case where the transverse momentum broadening of the quark is neglected.
This allows us to use Eq. (??) for the quark propagators:

G(p, L; p0 � k

0
, t|(1 � z)E) ' e

�i

p2

2(1�z)E (L�t)U(L, t; [xcl]) (2⇡)2�(p � p

0 + k

0), (84)

and

G(p0
, t; p0, t0|E) ' e

�i

p02
2E (t�t0)U(t, t0; [xcl]) (2⇡)2�(p0 � p0),

= e�i

(p+k)2

2E (t�t0)U(t, t0; [xcl]) (2⇡)2�(p + k � p0) (85)

where in the last line we have used that p

0 = p � k

0 from the first propagator. Now combing the phases
at t, and keeping only linear terms in k and z we find:

p

2

2E(1 � z)
� (p + k

0)2

2E
' �p · k0

E

+
zp

2

2E
(86)

= �k

0 · n +
1

2
!n

2
, (87)

9
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tf � L

� > �c � 1/
�

q̂L3• Minimum radiation angle

• every internal vertex appears with an explicit integration over time.

• the hard vertex, represented by a hard amplitude, enforces the initial time to be located at t = 0.

5. Amplitudes

5.1. Connection to the hard vertex

Deriving the propagators above, we have explicitly taken advantage of the fact that the spinors are not
singular in p

�. This allows us to enforce conservation of p+- and p-momenta. Furthermore, all “internal”
vertices are devoid of any phases except the ones absorbed into the propagators. One exception is for the
propagator that enters the Cutkosky cut, as described above. Another exception is the treatment of the
hard vertex that produces the initial hard parton.

When gluing to the full amplitude, we want to be oblivious to what happens at Born leve. E.g., for
the production of a quark that experiences multiple scattering we would write the amplitude

M(p
1
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) =

1
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We set the lower limit of the t0-integral to 0 in order to avoid any contributions from advanced propagators.
The additional phase factor related to the initial position t0 appears from the momentum conservation
and depends on all the incoming particles, since p

�-momentum is not conserved. With
P

p

�
INt0 � 1

forces the initial time to be close to 0.

5.2. Gluon emission o↵ a quark

In order to put the Feynman diagrams listed previously to use, we also have to define how to glue
the propagators to the amplitude of the hard vertex. Since the process that creates the particle we are
interested in is supposed to be very hard, the time-scale related to it is vanishingly small. In the simplest
case, e.g., for the production of a single quark propagating in the medium, we simply can fix the initial
time to t0 = 0 and multiply by the amplitude for the hard vertex (which only depends the energy and
transverse momentum of the initial particle).

Consider as a concrete example the emission of a gluon, with energy and transverse momentum
{! ⌘ zE,k}, o↵ a quark, with correspondingly {E,p}, in the medium. Using the Feynman rules derived
in ??, the amplitude reads

M(a,i)
(�,s)(p, k) =
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We are focusing here on the case where the transverse momentum broadening of the quark is neglected.
This allows us to use Eq. (??) for the quark propagators:

G(p, L; p0 � k

0
, t|(1 � z)E) ' e
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p2
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and
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where in the last line we have used that p

0 = p � k

0 from the first propagator. Now combing the phases
at t, and keeping only linear terms in k and z we find:
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q̂L3• Minimum radiation angle

• every internal vertex appears with an explicit integration over time.

• the hard vertex, represented by a hard amplitude, enforces the initial time to be located at t = 0.

5. Amplitudes

5.1. Connection to the hard vertex

Deriving the propagators above, we have explicitly taken advantage of the fact that the spinors are not
singular in p

�. This allows us to enforce conservation of p+- and p-momenta. Furthermore, all “internal”
vertices are devoid of any phases except the ones absorbed into the propagators. One exception is for the
propagator that enters the Cutkosky cut, as described above. Another exception is the treatment of the
hard vertex that produces the initial hard parton.

When gluing to the full amplitude, we want to be oblivious to what happens at Born leve. E.g., for
the production of a quark that experiences multiple scattering we would write the amplitude

M(p
1
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1
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We set the lower limit of the t0-integral to 0 in order to avoid any contributions from advanced propagators.
The additional phase factor related to the initial position t0 appears from the momentum conservation
and depends on all the incoming particles, since p

�-momentum is not conserved. With
P

p

�
INt0 � 1

forces the initial time to be close to 0.

5.2. Gluon emission o↵ a quark

In order to put the Feynman diagrams listed previously to use, we also have to define how to glue
the propagators to the amplitude of the hard vertex. Since the process that creates the particle we are
interested in is supposed to be very hard, the time-scale related to it is vanishingly small. In the simplest
case, e.g., for the production of a single quark propagating in the medium, we simply can fix the initial
time to t0 = 0 and multiply by the amplitude for the hard vertex (which only depends the energy and
transverse momentum of the initial particle).

Consider as a concrete example the emission of a gluon, with energy and transverse momentum
{! ⌘ zE,k}, o↵ a quark, with correspondingly {E,p}, in the medium. Using the Feynman rules derived
in ??, the amplitude reads

M(a,i)
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We are focusing here on the case where the transverse momentum broadening of the quark is neglected.
This allows us to use Eq. (??) for the quark propagators:
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where in the last line we have used that p

0 = p � k

0 from the first propagator. Now combing the phases
at t, and keeping only linear terms in k and z we find:
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• every internal vertex appears with an explicit integration over time.

• the hard vertex, represented by a hard amplitude, enforces the initial time to be located at t = 0.

5. Amplitudes

5.1. Connection to the hard vertex

Deriving the propagators above, we have explicitly taken advantage of the fact that the spinors are not
singular in p

�. This allows us to enforce conservation of p+- and p-momenta. Furthermore, all “internal”
vertices are devoid of any phases except the ones absorbed into the propagators. One exception is for the
propagator that enters the Cutkosky cut, as described above. Another exception is the treatment of the
hard vertex that produces the initial hard parton.

When gluing to the full amplitude, we want to be oblivious to what happens at Born leve. E.g., for
the production of a quark that experiences multiple scattering we would write the amplitude
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We set the lower limit of the t0-integral to 0 in order to avoid any contributions from advanced propagators.
The additional phase factor related to the initial position t0 appears from the momentum conservation
and depends on all the incoming particles, since p

�-momentum is not conserved. With
P

p

�
INt0 � 1

forces the initial time to be close to 0.

5.2. Gluon emission o↵ a quark

In order to put the Feynman diagrams listed previously to use, we also have to define how to glue
the propagators to the amplitude of the hard vertex. Since the process that creates the particle we are
interested in is supposed to be very hard, the time-scale related to it is vanishingly small. In the simplest
case, e.g., for the production of a single quark propagating in the medium, we simply can fix the initial
time to t0 = 0 and multiply by the amplitude for the hard vertex (which only depends the energy and
transverse momentum of the initial particle).

Consider as a concrete example the emission of a gluon, with energy and transverse momentum
{! ⌘ zE,k}, o↵ a quark, with correspondingly {E,p}, in the medium. Using the Feynman rules derived
in ??, the amplitude reads
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We are focusing here on the case where the transverse momentum broadening of the quark is neglected.
This allows us to use Eq. (??) for the quark propagators:
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where in the last line we have used that p
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q̂L3• Minimum radiation angle

• every internal vertex appears with an explicit integration over time.

• the hard vertex, represented by a hard amplitude, enforces the initial time to be located at t = 0.

5. Amplitudes

5.1. Connection to the hard vertex

Deriving the propagators above, we have explicitly taken advantage of the fact that the spinors are not
singular in p

�. This allows us to enforce conservation of p+- and p-momenta. Furthermore, all “internal”
vertices are devoid of any phases except the ones absorbed into the propagators. One exception is for the
propagator that enters the Cutkosky cut, as described above. Another exception is the treatment of the
hard vertex that produces the initial hard parton.

When gluing to the full amplitude, we want to be oblivious to what happens at Born leve. E.g., for
the production of a quark that experiences multiple scattering we would write the amplitude
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1
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
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We set the lower limit of the t0-integral to 0 in order to avoid any contributions from advanced propagators.
The additional phase factor related to the initial position t0 appears from the momentum conservation
and depends on all the incoming particles, since p

�-momentum is not conserved. With
P

p

�
INt0 � 1

forces the initial time to be close to 0.

5.2. Gluon emission o↵ a quark

In order to put the Feynman diagrams listed previously to use, we also have to define how to glue
the propagators to the amplitude of the hard vertex. Since the process that creates the particle we are
interested in is supposed to be very hard, the time-scale related to it is vanishingly small. In the simplest
case, e.g., for the production of a single quark propagating in the medium, we simply can fix the initial
time to t0 = 0 and multiply by the amplitude for the hard vertex (which only depends the energy and
transverse momentum of the initial particle).

Consider as a concrete example the emission of a gluon, with energy and transverse momentum
{! ⌘ zE,k}, o↵ a quark, with correspondingly {E,p}, in the medium. Using the Feynman rules derived
in ??, the amplitude reads
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We are focusing here on the case where the transverse momentum broadening of the quark is neglected.
This allows us to use Eq. (??) for the quark propagators:
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where in the last line we have used that p

0 = p � k

0 from the first propagator. Now combing the phases
at t, and keeping only linear terms in k and z we find:
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5.1. Connection to the hard vertex

Deriving the propagators above, we have explicitly taken advantage of the fact that the spinors are not
singular in p

�. This allows us to enforce conservation of p+- and p-momenta. Furthermore, all “internal”
vertices are devoid of any phases except the ones absorbed into the propagators. One exception is for the
propagator that enters the Cutkosky cut, as described above. Another exception is the treatment of the
hard vertex that produces the initial hard parton.

When gluing to the full amplitude, we want to be oblivious to what happens at Born leve. E.g., for
the production of a quark that experiences multiple scattering we would write the amplitude
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We set the lower limit of the t0-integral to 0 in order to avoid any contributions from advanced propagators.
The additional phase factor related to the initial position t0 appears from the momentum conservation
and depends on all the incoming particles, since p

�-momentum is not conserved. With
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forces the initial time to be close to 0.

5.2. Gluon emission o↵ a quark

In order to put the Feynman diagrams listed previously to use, we also have to define how to glue
the propagators to the amplitude of the hard vertex. Since the process that creates the particle we are
interested in is supposed to be very hard, the time-scale related to it is vanishingly small. In the simplest
case, e.g., for the production of a single quark propagating in the medium, we simply can fix the initial
time to t0 = 0 and multiply by the amplitude for the hard vertex (which only depends the energy and
transverse momentum of the initial particle).

Consider as a concrete example the emission of a gluon, with energy and transverse momentum
{! ⌘ zE,k}, o↵ a quark, with correspondingly {E,p}, in the medium. Using the Feynman rules derived
in ??, the amplitude reads
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We are focusing here on the case where the transverse momentum broadening of the quark is neglected.
This allows us to use Eq. (??) for the quark propagators:
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QUALITATIVE: MULTIPLE SCATTERINGS
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time larger than mean free path
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•soft gluons are produced with very short times t ~ √ω!

•opposite to vacuum (at finite angle) t ~ 1/ω𝜗2
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�x⇥ = k�1
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Figure 2: RAA of h±, D and J/ as a function of p?/ n!c

in PbPb collisions at
p
s = 2.76 TeV and

p
s = 5.02 TeV in

di↵erent centrality classes.

BDMS approximation, the p? dependence of RAA is di-
rectly connected to the medium-induced gluon spectrum
(u = !/!c) [38]

RAA(y ⌘ p?/n!̄c) ' exp


�
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0
du

dI

0(u)

du

⇣
1� e

�u/y
⌘�

(6)
with dI

0(u)/du = !c dI(!)/d!.
In the present article, RAA(p?/!̄c) is computed nu-

merically from (3) using the quenching weight computed
in [43] from the BDMPS medium-induced gluon spec-
trum [33, 44]. Fig. 1 shows RAA as a function of p?/n!̄c

for di↵erent values of power law exponents. As can be
seen, scaling in p?/n!̄c is well observed, except at low
p?/n!̄c and for the smallest values of n [55]. It has also
been checked, for consistency, that the BDMS analytic
approximation, Eq. (6), reproduces Eq. (5) well when
p?/n!c gets large. Finally, RAA is computed from (6)
using the GLV spectrum at first order in opacity [34, 35],
shown as a dashed line in Fig. 1. For a meaningful com-
parison with BDMPS, the GLV energy loss scale has
been rescaled by a factor 3, as already noted in [45]. Al-
though the BDMPS and GLV medium-induced spectra
behave somewhat di↵erently in the infrared, respectively
u dI

0
/du / 1/

p
u and u dI

0
/du / 1/ lnu, the p? depen-

dence of RAA is not too dissimilar; yet, the shape using
the GLV spectrum proves not as steep.

In this simple energy loss model, the shape of RAA as
a function of p? is thus fully predicted once the expo-
nent n is known, obtained from a fit to the pp data at
the corresponding center-of-mass energy. What remains
to be determined is the energy loss scale !̄c, which is
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Figure 3: Mean energy loss extracted in PbPb collisions atp
s = 2.76 TeV (triangles) and

p
s = 5.02 TeV (squares) from

the quenching of h±, D, and J/ .

in principle a complicated (and virtually unknown) func-
tion of the space-time evolution of the QGP energy den-
sity and the geometry of the heavy ion collision. Rather
than modeling the hot medium, the value of !̄c is ob-
tained from ‘agnostic’ 1-parameter fit to each data set, in
a given centrality class and at a given

p
s. Measurements

include charged hadrons measured by CMS in five cen-
trality classes [56] at both colliding energies [9, 10], J/ 
and D mesons measured respectively by ATLAS [46] and
CMS [47] at

p
s = 5.02 TeV in one centrality class, for a

total number of 12 data sets. Data from ALICE [7, 48, 49]
are not included here as I focus on measurements with
largest p? , however these results will be included in the
more detailed analysis [50].

The comparison of the fits to the individual data sets
will be shown in a forthcoming publication [50]. Instead,
Fig. 2 shows all data points [57] plotted as a function of
the scaling variable, p?/ n!̄c, together with the shape of
RAA , Eq. (5). Clearly all data exhibit an almost perfect
scaling, lining up into a single ‘universal’ shape. This
feature, predicted in the energy loss model and observed
in data, supports the interpretation of a unique pro-
cess responsible for the nuclear modification factors of all
hadrons above a given p? in heavy-ion collisions at the
LHC. In particular, I find it interesting that the quench-
ing of heavy mesons (D and J/ ) obeys the exact same
pattern, suggesting again that at large p? the same pro-
cess a↵ects similarly all hadron species, including bound
states like heavy-quarkonia. Also worth to be noted are
the scaling violations observed for lower p? particles.
The lack of scaling emerges below p? ' 10 GeV, for
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• probabilistic picture

• turbulent cascade: energy taken away 
from projectile into soft particles at 
large angles

• large fluctuations

• IR: thermalisation (bottom-up)
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(linearly) with time, keeping the characteristic form of the scaling spectrum. When
the peak has disappeared, the cascade continues to lower x, causing a uniform,
shape conserving, decrease of the occupations of the modes, and a flow of energy
towards small x.
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Fig. 8. (Color online.) The function D(x, ⌧) (Eq. (5.99)) at various times. Left panel: the
filling of the modes, which proceeds till the disappearance of the leading particle peak. The values
of ⌧ are, for the thick (blue) curves, from bottom to top: 0.1, 0.2, 0.3 (during this stage the
leading particle acts as a source for soft gluon radiation), and for the thin (black) curves, from
top to bottom: 0.5, 0.7, 0.9,1.0,1.1,1.2 (the leading parton has exhausted its energy and the peak
has disappeared, while energy continues to flow to small x, the amount of energy in each mode
decreasing exponentially fast). Right panel: energy is constantly injected into the system by a
source located at x = 1 (see Eq. (5.106)). After a transitory regime, characterized by a uniform
increase with time of the scaling spectrum, the system reaches a steady state. The values of ⌧ are,
from bottom to top: 0.1,0.2,0.3, 0.4, 0.5, 0.6,0.7,0.8,0.9,1.0.

We define
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, E(x0, ⌧) ⌘
Z 1

x0

dxD(x, ⌧), (5.101)

where E(x0, ⌧) is the amount of energy contained in the modes with x > x0, and
F(x0, ⌧) is the corresponding flux of energy, counted positively for energy moving
to values of x smaller than x0. These quantities can be calculated explicitly. We
have for instance

E(x0, ⌧) =

Z 1

x0

dx D(x, ⌧) = e�⇡⌧2

erfc

✓r
⇡x0

1 � x0
⌧

◆
, (5.102)

with erfc(x) the complementary error function. We note that the fraction of the
total energy “stored in the spectrum”, namely

lim
x0!0

E(x0, ⌧) = e�⇡⌧2

, (5.103)

momentum fraction

⌧ =

r
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•how does an entire jet loose energy to the medium?
•need to account for fluctuations of energy loss due to 

fluctuations of the jet substructure!

Two limiting cases
•coherently as a single colour charge (parton)
• incoherently as multiple charges

Formidable task: existing Monte-Carlo prescriptions
JEWEL:	Zapp,	Krauss,	Wiedemann	arXiv:1212.1599	

MARTINI:	Schenke,	Gale,	Jeon	arXiv:0909.2037
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propagator parts later if we need to — which we won’t):

Mqq̄ = ūa(p1)ieqγµδabvb(p2)

p1

p2

 ie ! µ
,

where the diagram illustrates the momentum labelling. Here ū(p1) and v(p2) are the spinors for the
outgoing quark and anti-quark (taken massless), eq is the quark’s electric charge and the γµ are the Dirac
matrices. In what follows we shall drop the a, b quark colour indices for compactness and reintroduce
them only at the end.

The corresponding amplitude including the emission of a gluon with momentum k and polarization
vector ϵ is

Mqq̄g =
k ,"

 ie  ! µ

p1

p2

+
k ,"

 ie  ! µ

p1

p2

(12a)

= −ū(p1)igs /ϵt
A i( /p1 + /k)

(p1 + k)2
ieqγµv(p2) + ū(p1)ieqγµ

i( /p2 + /k)

(p2 + k)2
igs /ϵt

Av(p2) , (12b)

with one term for emission from the quark and the other for emission from the anti-quark and use of

the notation /p = pµγµ. Let’s concentrate on the first term, collecting the factors of i, and using the
anti-commutation relation of the γ-matrices, /A /B = 2A.B − /B /A, to write

iū(p1)gs /ϵt
A ( /p1 + /k)

(p1 + k)2
eqγµv(p2) = igsū(p1)

[2ϵ.(p1 + k)− ( /p1 + /k)/ϵ]

(p1 + k)2
eqγµt

Av(p2) , (13a)

≃ igs
p1.ϵ

p1.k
ū(p1)eqγµt

Av(p2) , (13b)

where to obtain the second line we have made use of the fact that ū(p1) /p1 = 0, p21 = k2 = 0, and
taken the soft approximation kµ ≪ pµ, which allows us to neglect the terms in the numerator that are
proportional to k rather than p. The answer including both terms in Eq. (12) is

Mqq̄g ≃ ū(p1)ieqγµt
Av(p2) · gs

(
p1.ϵ

p1.k
−

p2.ϵ

p2.k

)

, (14)

where the first factor has the Lorentz structure of theMqq̄ amplitude, i.e., apart from the colour matrix

tA, Mqq̄ is simply proportional to theMqq̄ result. We actually need the squared amplitude, summed

over polarizations and colour states,

|Mqq̄g|2 ≃
∑

A,a,b,pol

∣
∣
∣
∣
ūa(p1)ieqγµt

Avb(p2) gs

(
p1.ϵ

p1.k
−

p2.ϵ

p2.k

)∣
∣
∣
∣

2

= −|M2
qq̄|CF g

2
s

(
p1
p1.k

−
p2
p2.k

)2

= |M2
qq̄|CF g

2
s

2p1.p2
(p1.k)(p2.k)

. (15)

We have now explicitly written the quark colour indices a, b again. To obtain the second line we

have made use of the result that
∑

A,a,b t
A
abt

A
ba = CFNC [cf. Eq. (8b)], whereas for |M2

qq̄| we have
∑

A,a,b δabt
A
ba = NC . To carry out the sum over gluon polarizations we have exploited the fact that

∑

pol ϵµ(k)ϵ
∗
ν(k) = −gµν , plus terms proportional to kµ and kν that disappear when dotted with the

amplitude and its complex conjugate.

One main point of the result here is that in the soft limit, the |Mqq̄g|2 squared matrix element
factorizes into two terms: the |Mqq̄|2 matrix element and a piece with a rather simple dependence on the
gluon momentum.
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propagator parts later if we need to — which we won’t):
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where the diagram illustrates the momentum labelling. Here ū(p1) and v(p2) are the spinors for the
outgoing quark and anti-quark (taken massless), eq is the quark’s electric charge and the γµ are the Dirac
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where to obtain the second line we have made use of the fact that ū(p1) /p1 = 0, p21 = k2 = 0, and
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We have now explicitly written the quark colour indices a, b again. To obtain the second line we

have made use of the result that
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A
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ba = CFNC [cf. Eq. (8b)], whereas for |M2

qq̄| we have
∑
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A
ba = NC . To carry out the sum over gluon polarizations we have exploited the fact that
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pol ϵµ(k)ϵ
∗
ν(k) = −gµν , plus terms proportional to kµ and kν that disappear when dotted with the

amplitude and its complex conjugate.

One main point of the result here is that in the soft limit, the |Mqq̄g|2 squared matrix element
factorizes into two terms: the |Mqq̄|2 matrix element and a piece with a rather simple dependence on the
gluon momentum.
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outgoing quark and anti-quark (taken massless), eq is the quark’s electric charge and the γµ are the Dirac
matrices. In what follows we shall drop the a, b quark colour indices for compactness and reintroduce
them only at the end.

The corresponding amplitude including the emission of a gluon with momentum k and polarization
vector ϵ is

Mqq̄g =
k ,"

 ie  ! µ

p1

p2

+
k ,"

 ie  ! µ

p1

p2

(12a)
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where the first factor has the Lorentz structure of theMqq̄ amplitude, i.e., apart from the colour matrix
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We have now explicitly written the quark colour indices a, b again. To obtain the second line we
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amplitude and its complex conjugate.

One main point of the result here is that in the soft limit, the |Mqq̄g|2 squared matrix element
factorizes into two terms: the |Mqq̄|2 matrix element and a piece with a rather simple dependence on the
gluon momentum.
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taken the soft approximation kµ ≪ pµ, which allows us to neglect the terms in the numerator that are
proportional to k rather than p. The answer including both terms in Eq. (12) is
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Resulting spectrum: modification of interferences
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TWO-PRONG ENERGY LOSS

• how do two colour-connected 
charges lose energy? 

- tagging two hard sub-jets within a  
jet cone

- fixed opening angle

• depends on direct emissions + 
interference

• pair gradually decoheres: interpolates 
between
- small angle: no eloss (photon)
- large angle: independent eloss

59
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SOLUTION

• quantum decoherence (instantaneous)

- hard emissions can resolve the internal colour structure
- corresponds to collinear emissions in vacuum…

• colour decoherence (accumulative)

- the pair gradually becomes disconnected in colour & behave 
independently

• probabilistic formulation

60
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NEW QUENCHING WEIGHT
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2-prong (θ12=0.1)
2-prong (θ12=0.5)
2-prong (incoherent)
1-prong energy loss
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A NEW OBSERVABLE

62

• quenching depends 
on the opening angle!

• large-angle structures 
within jets are 
strongly suppressed
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SUMMARY OF THE LECTURES
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SUMMARY OF THE LECTURES
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vacuum 
soft & collinear divergences
colour coherence (angular ordering)
multi-gluon emissions (MLLA)

medium 
collinear finite & soft enhanced spectrum

gradual breaking of colour coherence 
multi-gluon emissions lead to energy loss

(+ hard BDMPS radiation)

outlook 
theoretical progress prompted by exciting experimental results

new aspects of QCD are studied (jet perspective, medium perspective)
toward building a full understanding of hard probes @ LHC
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