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Motivation

Ideal hydro:

∂µT
µν = 0 (1)

Tµν = Tµνideal = diag
[
e(T ), p(T ), p(T ), p(T )

]
(2)

This lecture will be about numerically computing p(T )
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Outline and Goals

Basics of thermal field theory

Goal: Thermodynamics of 3+1d field theory from 4d field theory
with compact euclidean time

Lattice discretization of QCD

Goal: Gauge invariant formulation of lattice QCD in terms of link
matrices

Computation of equation of state

Goal: Practical understanding of lattice simulation on a computer
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Basics of thermal field theory

Quantum field theory of small number of particles: vacuum field theory

Observables: scattering amplitudes

Amplitudes calculated from vacuum to vacuum matrix elements
LSZ reduction

〈p1p2|k1k2〉 ∝ 〈0|T{φ̂(x1)φ̂(x2)φ̂(y1)φ̂(y2)}|0〉 (3)

Start from vacuum, add a particle though operating with a field
operator . . .
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Basics of thermal field theory

Large number of particles: statistical field theory

The system may not be a vacuum state to start with

〈0|Â|0〉 ⇒
∑
i

pi〈i|Â|i〉 (4)

The system starts in state |i〉 with a probability of pi

Define a density matrix:

∑
i

pi〈i|Â|i〉 = Tr

|i〉pi〈i|︸ ︷︷ ︸
ρ̂

Â

 ≡ Tr ρ̂Â (5)

Density matrix defines the state of the system, includes both
quantum and statistical uncertainty
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Basics of thermal field theory

In thermal system, the density matrix the one maximizing the
entropy

drop µ from now on

ρ̂ = e−β(Ĥ−µN̂) (6)

The partition function is given by the trace of the density matrix

Z = Tr ρ̂ (7)

Thermodynamical properties are related to the derivatives of Z

p(T ) =
T

V
logZ (8)

ε(T ) =
1

V
〈Ĥ〉 =

T 2

V

∂Z

∂T
(9)
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Basics of thermal field theory

How to compute Z?

So far our definitions involve operators. Ĥ, N̂ , etc.

Operators in space of many degrees of freedom are difficult to deal
with numerically.

In order to eventually simulate the system on a computer we want
to express the Z in terms of integral over ordinary numbers: Path
integral.

Tr ρ̂⇒
∫ ∏

x

dUx︸ ︷︷ ︸
DU

e−S(U(x)) (10)
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Basics of thermal field theory
How to compute Z?

Reminder: expressing matrix elements in terms of path integrals

〈φ2|e−itĤ |φ1〉 =

∫ φ(t′=t)=φ2

φ(t′=0)=φ1

Dφ eiS (11)

t’=0 t’=t

| φ
1 
> | φ

2 
>

φ(x,t’)

φ(x,t)=φ
2

φ(x,t)=φ
1

Here φ stands for any (bosonic) fields in the theory, Aµ for QCD
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Basics of thermal field theory

How to compute Z?

In thermal equilibrium: the density matrix looks exactly like a
time translation operator to imaginary time!

ρ̂ = e−βĤ = e−i

τ︷ ︸︸ ︷
(−iβ) Ĥ (12)

Matrix elements of ρ can be computed by evolving the states in
the imaginary time

〈φ2|e−itĤ |φ1〉 =

∫ φ(t′=t)=φ2

φ(t′=0)=φ1

Dφ eiS (13)

〈φ2|e−i(−iβ)Ĥ |φ1〉 =

∫ φ(t′=−iβ)=φ2

φ(t′=0)=φ1

Dφ eiS (14)
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Basics of thermal field theory
How to compute Z?

Partition function computed over all periodic field configurations
in imaginary time with period of 1

T

Z = Tr ρ̂ =
∑
φi

〈φi|e−i(iβ)Ĥ |φi〉 (15)

=
∑
φi

∫ φ(τ=iβ)=φi

φ(τ=0)=φi

DφeiS (16)

=

∫
φ(0)=φ(iβ)

DφeiS (17)

1/T
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Basics of thermal field theory

How to compute Z?

The action in real time is purely real number, time in special role

S =

∫
dt d3xL(φ, ∂iφ) =

∫
dt d3x

[
−∂2

t φ+∇2φ− V (φ)
]

(18)

In imaginary time t = iτ :

S =

∫
(idτ) d3xL(φ, ∂iφ) = i

∫ β

0
dτ

∫
d3x

[
+∂2

τφ+∇2φ− V (φ)
]

≡ iSE (19)

Time direction looks like spatial directions!

Imaginary time = Euclidean time
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Basics of thermal field theory

Remarks:

It is important that we did got rid of the Minkowski signature:
Minkowski tricky to discretize on a lattice because distance along
light cone X2 = 0.

It is important that Euclidean action is imaginary for numerical
evaluation of the path integral. Instead of rapidly oscillating
function of O(1) one has sharply peaked integrand.∫

DφeiS vs.

∫
Dφe−SE (20)

This doesn’t happen always. If the integrand oscillates, the theory
has a sign problem, notable examples:

If C symmetry is broken
QCD with baryon number chemical potential µB
”real time” correlation functions
Transport coefficients . . .
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Basics of thermal field theory

Remarks:

For bosons: compute the thermodynamics of 3+1d theory in 4d
space with compact euclidean time

For fermions: the path integral is over anticommuting grassmann
variables. Boundary conditions are antiperiodic.

ψ1ψ2 = −ψ2ψ1 (21)

For QCD: ∫
DAµDψ̄Dψe−S

QCD
E (Aµ,ψ̄,ψ) (22)

14 / 47



Outline and Goals

Basics of thermal field theory

Goal: Thermodynamics of 3+1d field theory from 4d field theory
with compact euclidean time

Lattice disceritization of QCD

Goal: Gauge invariant formulation of lattice QCD in terms of link
matrices

Computation of equation of state

Goal: Practical understanding of lattice simulation of a pure gauge
QCD on a computer
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Lattice regularization of QCD

In order to evaluate the path integral numerically, discretize the
space (and euclidean time) coordinates on a finite lattice

x = (τ, x, y, z)⇒ (anτ , anx, any, anz) with n ∈ integers

φ(x)⇒ φxi∫
Dφe−SE(φ,∂xφ) ⇒

∫ ∏
x

dφxe
−SLE(φx)

(23)

a
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Lattice regularization of QCD

Strategy: Compute at different lattice spacings, take eventually
continuum limit a→ 0

Note: Lattice is not an approximation of QFT, but a
non-perturbative regularization

a a
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Lattice regularization of QCD

Freedom in construction the lattice action:

Need to recover the continuum action in the continuum limit
as fast as possible, O(a) vs. O(a2)

The continuum limit a→ 0 defines a universality class: the
continuum limit is the same for any valid action.

At finite a results differ. . .

Caveat: If the lattice action breaks symmetries of the continuum
theory, the symmetries may or may not be restored in the
continuum limit:

if the symmetries are restored, the discretized theory belongs (or
may belong) to the same universality class and the continuum limit
can be taken

if the symmetries are not restored, the continuum limit does not
correspond to the continuum theory!
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Lattice regularization of QCD

Easy for scalar theory:

LE = (∂µφ)2 (24)

∂iφ→
1

a
[φ(xi + aêi)− φ(xi)] (25)

Breaks translational invariance of the theory, but symmetry is
restored in the continuum limit
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Lattice regularization of QCD

Argument: the long distance physics of the lattice theory
described by a continuum thy with additional operators

Leff = (∂µφ)2 + V (φ) + All op. respecting symms. of the lat. thy

= (∂µφ)2 + V (φ) + #a2φ∂µ∂µ∂µ∂µφ+ . . . (26)

All higher order terms have at least dimension 6: come with at least
a−2.

However, doing ∂iAj → 1
a (Aj(xi + aêi)−Aj(xi)), breaks gauge

invariance. This will not be restored in the continuum limit, and
the continuum limit is wrong!
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Lattice regularization of QCD

Lagrangian of QCD:

S =

∫ 1/T

0
dτ

∫
d3x

1

2
TrFµνFµν +

Nf∑
f=1

ψ̄f (γµDµ +mf )ψf

 (27)

Dµ = ∂µ + igAµ (28)

Gauge fields Aµ belong to Lie algebra of the group SU(3):Aµ are
3× 3 hermitean matrices.

A†µ = Aµ

Field strength tensor:

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ], (29)
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Lattice regularization of QCD

In additional to Lorentz symmetry, the action has the improrant gauge
symmetry.

The gauge symmetry is essential part of the theory
Renormalizability, conserved color current, vanishing gluon mass,2 polarization of gluons, . . .

S =

∫ 1/T

0
dτ

∫
d3x

1

2
TrFµνFµν +

Nf∑
f=1

ψ̄f (γµDµ +mf )ψf


Dµ = ∂µ + igAµ (30)

Gauge transformations:

ψf (x) −→ G(x)ψf (x), ψ̄f (x) −→ ψ̄f (x)G†(x),

Aµ(x) −→ G(x)Aµ(x)G†(x)− i

g
G(x)∂µG

†(x) (31)
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Lattice regularization of QCD

Consider naively discretizing the action

∂µAν →
1

a
(Aν(x+ aêµ)−Aν(x))

The resulting lattice action breaks gauge invariance

Then the continuum theory describing the long wavelength modes
of the lattice theory contain terms like

Leff ∈
#

a2
AµAµ (32)

These terms do not vanish in the continuum limit!

Can be in principle cancelled by adding counter terms. In practice
for gauge symmetry not possible.

Much more practical to find a lattice action that conserves the
symmetry
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Lattice regularization of QCD

In order to discretize the action in a gauge invariant way, consider
a path ordered exponential of the field, the Wilson line

The color rotation a color charge gets when moving in chromo-E and -B fields . . .

U(xi, xf ) = Peig
∫ yf
xi

dyνAν(y) (33)

x
i

x
f

Wilson line is an element of the group: 3× 3 unitary matrix,

U †U = 1

.

Wilson line gauge transforms according to its end points:

U(xi, xf ) −→ G(xi)U(xi, xf )G†(xf ) (34)
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Lattice regularization of QCD

Trace of a closed loop, or Wilson loop is gauge invariant

TrU(xi, xi) −→TrG(xi)U(xi, xi)G
†(xi) = TrG†(xi)G(xi)U(xi, xf )

=TrU(xi, xi) (35)

x
i

All gauge invariant quantities can be expressed in terms of closed
Wilson loop, including the action TrFµνFµν .
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Lattice regularization of QCD

Strategy:

Instead of discretizing the field Aµ, discretize the Wilson lines

As traces of all Wilson loops are gauge invariant, such a discretized
action is by construction gauge invariant

Our next task is to find an expression in terms of discretized Wilson
lines on the lattice which goes to the continuum action in the
continuum limit
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Lattice regularization of QCD

A short Wilson line connecting two lattice sites is a link

Uµ(x) = Peig
∫ x+aêµ
x dyνAν(y) ≈ eiagAµ(x). (36)

Wilson line transforms according to its endpoints

Uµ(x) −→ G(x)Uµ(x)G†(x+ aêµ), (37)
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Lattice regularization of QCD

The simplest possible Wilson loop constructed from links is the
plaquette

Uµν(x) = Uµ(x)Uν(x+ aêµ)U †µ(x+ aêν)U †ν (x). (38)

In the continuum limit the plaquette is related to the field
strength tensor

Uµν(x) = eiagAµ(x)eiagAν(x+aêµ)e−iagAµ(x+aêν)e−iagAν(x) (39)

= eiga
2Fµν+O(a6)

= 1 + iga2Fµν − g2a4F 2
µν +O(a6) (40)
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Lattice regularization of QCD

Take the combination of plaquettes that reduces to the continuum
action in the continuum limit: Wilson action

SW = βW
∑
P

[1− 1

2Nc
Tr (Uµν(x) + U †µν(x))] (41)

= βW
∑
µ<ν,x

Tr
[ 1

Nc
− 1

2Nc

(
2− g2a4FµνFµν

)]
(42)

= βW
g2

2Nc

∑
x,µ,ν

a4Tr [
1

2
FµνFµν ] (43)

=

∫
dτd3x

1

2
Tr [FµνFµν ] (44)

for lattice couping constant βW = 2Nc
g2
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Lattice regularization of QCD

Remarks:

Wilson action is the simplest gauge invariant action that reduces
to the continuum action in the continuum limit.

Wilson action is just one of many possible actions. Can add more
complicated wilson loops to improve the approach to continuum
limit etc.

Euclidean time formulation of thermal field theory combined with
the Wilson action makes it possible to put the thermal quantum
field theory on a computer and do practical simulations

Z =

∫
DUµe−SW (45)
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Lattice regularization of QCD

A word about fermions:

Path integral of fermionic fields is an integral over grassmann
variables

Z =

∫
DUµDψ̄Dψe−SW−SF , SF ∼

∑
x,y

ψ̄xMx,y(Uµ)ψy (46)

Grassmann practically impossible to implement on a computer

However, bilinear fields can always be integrated over

Z =

∫
DUµ det[Mx,y(Uµ)]e−SW (47)

Resulting expression in terms of ordinary numbers, but non-local
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Lattice regularization of QCD

Discretizing massless fermions (or small mass mu and md)
fermions is difficult:

for mf → 0 the continuum theory has an extra symmetry chiral
symmetry

Chiral symmetry necessarily broken by discretization, and not easily
recovered in the continuum limit

Nielsen Ninomiya theorem

Many different strategies (actions) to deal with the fermions

Wilson fermions, staggered fermions, domain wall fermions, overlap fermions
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Continuum limit

At the end of the day one has to take a→ 0.

The lattice spacing a does not appear explicitly anywhere in the
expression!∫

DUµ exp

[
−βW

∑
P

[1− 1

2Nc
Tr (Uµν(x) + U †µν(x))]

]
(48)

However, the coupling constant βW has a hidden scale dependece
The bare unrenormalized g2 is ∼ g2(a)

βW =
2Nc

g2(a)
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Continuum limit

Assume that on a finite lattice there is a finite correlation length.
Physical scale

Confinement hypothesis; hadronic scale

ξ(βW )� a

a a
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Continuum limit

As the lattice coupling βW increases (g(a) decreases), correlation
length ξ/a grows

correlation length grows in lattice units
lattice spacing shrinks in units of the correlation length

a a
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Continuum limit

Measure ξ/a as a function of βW will give a(β) in physical units
and continuum limit can be taken.

〈O〉a = 〈O〉cont +O(a) (49)

a a
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Continuum limit

If the lattice spacing dependence of a quantity is known
Callan-Symanzik β-function can be defined

Don’t confuse β(g) to βW or 1/T !!

d

da
ξ(a, g(a)) = 0 (50)

1

a

a∂a +
∂g

∂ ln a︸ ︷︷ ︸
−β(g)

∂g

 ξ(a, g(a)) = 0 (51)

In an asymptotically free theory, at sufficiently weak coupling
(corresponding to small lattice spacing), this can be computed as
power series in (lattice) perturbation theory!

Compute any observable as a function of g and a, apply derivatives and solve for β(g)

β(g) ≡ β0g
3 +O(g5) =

QCD
− 1

16π2

(
11Nc

3
−

2Nf

3

)
g3 (52)
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Continuum limit

Integrating the β(g) gives the lattice spacing as a function of the
bare lattice coupling βW Remember g2 = 2Nc/βW

β(g) = − ∂g

∂ log a
= −β0g

2 ⇒ a(βW ) =
1

ΛL
e
− βW

4Ncβ0 (53)

ΛL is integration constant that sets the scale of QCD and is the
only input needed.

Remarks:

If fermions: similar β-functions and renormalization for masses

Scaling regime:
〈O〉a = 〈O〉cont +O(a)

Asymptotic scaling regime:

a(βW ) =
1

ΛL
e
− βW

4Ncβ0

In practice almost all simulations performed in scaling regime
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Outline and Goals

Basics of thermal field theory

Goal: Thermodynamics of 3+1d field theory from 4d field theory
with compact euclidean time

Lattice disceritization of QCD

Goal: Gauge invariant formulation of lattice QCD in terms of link
matrices

Computation of equation of state

Goal: Practical understanding of lattice simulation of a pure gauge
QCD on a computer
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Measurement of the equation of state

So far we have established that the partition function Z is given
over an integral over many, many link matrices

neglect fermions for now. . .

Z =

∫
DUµe−SW =

∫ ∏
µ︸︷︷︸

directions

∏
x︸︷︷︸

lattice sites

dUx,µ︸ ︷︷ ︸
8 d.o.f in SU(N)

e−SW (Ux,µ)

(54)

Consider a 32× 8 lattice
There are 32× 8× (4directions)× (8d.o.f ′s) ∼ 107 integral to
perform!
However: because the exponential form, the integrand is very
sharply peaked.
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Measurement of the equation of state
For sharply peaked multidimensional integrals there is a powerful
method called importance sampling.

Common across many fields of science

Instead of computing Z directly, consider expectation values of
operators:

〈O〉 ≡ 1

Z

∫ ∏
dUx,µ O[U ]e−SW (55)

Monte Carlo algorithms: Approximate the integral by generating
an ensemble of field configurations {U1, U2, . . .} with probability

dP (U j) =
e−SW (Uj)

Z

and write the expectation value as an ensemble average

1

NMC

NMC∑
j

O[U j ] −→
NMC→∞

〈O〉 (56)
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Measurement of the equation of state

If we knew what Z is this would be simple. But we don’t!

Need to have an algorithm that generates the ensemble without
the knowledge of Z: Marcov Chain Monte Carlo algorithm

Create a random sequence of configurations {U1, U2, . . .} where the
configuration Ui depends (only) on the previous configuration Ui−1

If the transition probabilities of going from Ui−1 ↔ Ui satisfy
detailed balance

e−SW (Ui−1)dP (Ui−1 → Ui) = e−SW (Ui)dP (Ui → Ui−1), (57)

the resulting ensemble is the correct one.
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Measurement of the equation of state

A particular Markov Chain Monte Carlo algorithm: Metropolis
algorithm

Propose a new configuration by somehow freely deforming the
previous one.

Accept it with a probability

Pacc(Ui−1 → Ui) = min(1,
e−SW (Ui)

e−SW (Ui−1)
)

If reject, then don’t change the configuration Ui = Ui−1

Lots of development to find an optimal deformation
HMC,RHMC, overrelaxation, . . .
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Measurement of the equation of state

We are finally (almost) ready to measure the equation of state!

Still need to reconstruct the Z from operator expectation values

Many possible ways of doing so, here integral method

Tµµ ≡ ε− 3p = −T
V

∂ logZ

∂ ln a
(58)

= −T
V
β(g)〈

∑
P

[1− 1

2Nc
Tr (Uµν(x) + U †µν(x))]〉 (59)

⇒ p(T )

T 4
=

∫ T

0
dT ′

ε− 3p

T ′5
(60)
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Measurement of the equation of state

Continuum limit a→ 0

Thermodynamical limit N →∞
Physical quark masses mu, md, ms
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Measurement of the equation of state
Comment of transport coefficients:

Transport coefficients are also “in principle” measurable on the
lattice:

GRxy,xy(ω, p = 0) ≡
∫
dtd3xeitωΘ(t)〈[Tx,y(t), T0,0(0)]〉 (61)

η = − lim
ω→0

1

ω
=GR(ω, 0) (62)

This correlation function is in real time, not in euclidean time!
However, in thermal equilibrium the correlation functions are
analytically connected.

Long story, can talk later. . .

GE(τ, p) =

∫ ∞
0

dω=GR(ω, p)K(ω, τ) (63)

K(ω, τ) =
cosh(ω(τ − 1/2T ))

sinh(ω/2T )
(64)

Inversion with data with limited accuracy not well defined
mathematical problem
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