Introduction to J/ ψ analysis J/ $\psi \rightarrow e^+e^-$

Ionut Arsene, Uinversity of Oslo 2017/05/20

Motivation

• See lecture on heavy quarkonia (wednesday)

Introduction

- Reference with analysis description: ALICE Collaboration, arXiv: 1105.0380
- Study inclusive J/ψ production in pp collisions at √s=13 TeV at mid-rapidity using the ALICE central barrel
- Reconstruct J/ψ via its dielectron decay channel
 - J/ $\psi \rightarrow e^+e^-$ (5.97%)
 - \rightarrow e+e-y (0.88%)
- Inclusive J/ψ:
 - Prompt (short lifetimes not-distinguishable experimentally)
 - Direct J/ψ (directly produced in the collision)
 - Feed-down from higher mass charmonia: $\chi_c(1P)$, $\psi(2S,3S...)$
 - Non-prompt (long lifetimes ~500 μm)
 - J/ψ from B-mesons decay

Introduction

J/ψ production cross-section:

$$\sigma_{J/\psi} = \frac{N_{J/\psi}}{(A \times \epsilon) BR(J/\psi \rightarrow ee)} \times \frac{\sigma_{MB}}{N_{MB}}$$

- $N_{J/\psi}$ raw number of J/ψ counts
- (A X E) acceptance and efficiency correction
- σ_{MB} total cross-section of the minimum bias trigger
- N_{MB} number of inspected minimum bias events

Event selection

- Select good collision candidates
 - Minimum bias trigger fired
 - Reject background events
 - Reject pile-up events
- Good event vertex position (|z|<10 cm)
 - Ensure good detector coverage

Electron selection

Kinematic and track quality selection

- Kinematics
 - $m_{J/\psi}$ =3.1 GeV/c²: decay into electron pairs with large "momentum kick"
 - A J/ ψ at rest generates 2 electrons of P ~ 1.55 GeV/c
 - This motivates using high kinematic cuts (p_{τ} >1 GeV/c)
 - ALICE detector coverage: |η|<0.9
- Primary tracks: |DCA_{xv}|<1cm, |DCA_z|<3cm
- Track quality:
 - ITS: request at least 1 hit in the SPD (innermost 2 layer of the ITS)
 - TPC: 70 clusters (out of 159); χ²/ndf<4

Electron identification

- Electrons identified using the specific energy loss in the TPC gas (dE/dx)
- $|n-\sigma^e|<3$, $n-\sigma^\pi>3$, $n-\sigma^p>3$

Electron identification

- Electrons identified using the specific energy loss in the TPC gas (dE/dx)
- $|n-\sigma^e|<3$, $n-\sigma^\pi>3$, $n-\sigma^p>3$

Electron selection

```
Bool t SelectElectron(AliReducedTrackInfo* track) {
  // select electrons for J/psi decays
  // Kinematic cuts
  if(track->Pt()<1.0) return kFALSE;
  if(TMath::Abs(track->Eta())>0.9) return kFALSE;
  // track quality
  if(track->ITSncls()<4) return kFALSE;</pre>
  if(track->TPCncls()<100) return kFALSE:
  // PID
  if(TMath::Abs(track->TPCnSig(0))>3.0) return kFALSE;
  if(track->TPCnSig(1)<3.0) return kFALSE;</pre>
  if(track->TPCnSig(3)<3.0) return kFALSE;
  return kTRUE;
```

Signal extraction

- Invariant mass distribution for e⁺e⁻ pairs
- Note: J/psi peak does not follow a typical Breit-Wigner distribution
 - Electron energy loss via Brehmsstrahlung
 - Radiative J/psi decay
- Signal obtained by summing the background subtracted number of counts in a specified signal region (2.92 – 3.16 GeV/c²)
- Background estimation methods:
 - Same-event like-sign
 - Mixed event unlike-sign
 - Track rotation
 - Function fits

$$m^2 = 2 m_e^2 + 2 \left[\sqrt{m_e^2 + P_1^2} \sqrt{m_e^2 + P_2^2} - \vec{P}_1 \vec{P}_2 \right]$$

2-particle loop to build the invariant mass spectrum

```
// build unlike-sign invariant mass distribution

for(Int_t i=0;i<positrons.GetEntries();++i) {
    AliReducedTrackInfo* posTrack = (AliReducedTrackInfo*)positrons.At(i);
    for(Int_t j=0;j<electrons.GetEntries();++j) {
        AliReducedTrackInfo* negTrack = (AliReducedTrackInfo*)electrons.At(j);

    Float_t mass = 5.1e-4*5.1e-4+ 5.1e-4*5.1e-4 +
    2.0*(TMath::Sqrt(5.1e-4*5.1e-4+posTrack->P()*posTrack->P())*TMath::Sqrt(5.1e-4*5.1e-4+negTrack->P()*negTrack->P()) -
        posTrack->Px()*negTrack->Px() - posTrack->Py()*negTrack->Py() - posTrack->Pz()*negTrack->Pz());

    if(mass<0.0) {
        mass = 0.0;
    }
    else mass = TMath::Sqrt(mass);
    histMassUS->Fill(mass);
}
}
```

Like-sign (LS) background

 Obtained by constructing the invariant mass spectrum for like-sign electron pairs (e+e+ and e-e-)

$$LS = 2\sqrt{N_{pp} \times N_{mm}}$$

LS background is self-normalized

Mixed event (ME) background

- Obtained by constructing the invariant mass spectrum of unlike-sign electron pairs, where the e+ and e- belong to different events
- ME background needs to be normalized to match the SE distribution:
 - Use side-bands around the J/psi signal region

Mixed event (ME) background

- Obtained by constructing the invariant mass spectrum of unlike-sign electron pairs, where the e+ and e- belong to different events
- ME background needs to be normalized to match the SE distribution:
 - Use side-bands around the J/psi signal region
 - Normalize to the like-sign event distribution

Acceptance and efficiency correction

 Acceptance and efficiency corrections obtained using Monte-Carlo simulations with embedded J/psi particles

-
$$A \times \epsilon = N_{rec} / N_{gen}$$

Normalization

- Cross-section of the MB trigger measured using van der Meer scans
- Number of inspected MB events
 - All events which passed the event selection criteria (including the MB trigger condition)

Corrected inclusive cross-section

Exercises

Electron identification using the TPC dE/dx

- Constructing an invariant mass distribution
 - Unlike-sign distribution
 - Like-sign distribution

Extracting the J/psi signal