

Status and plans of the Compact Linear Collider

Philip Burrows

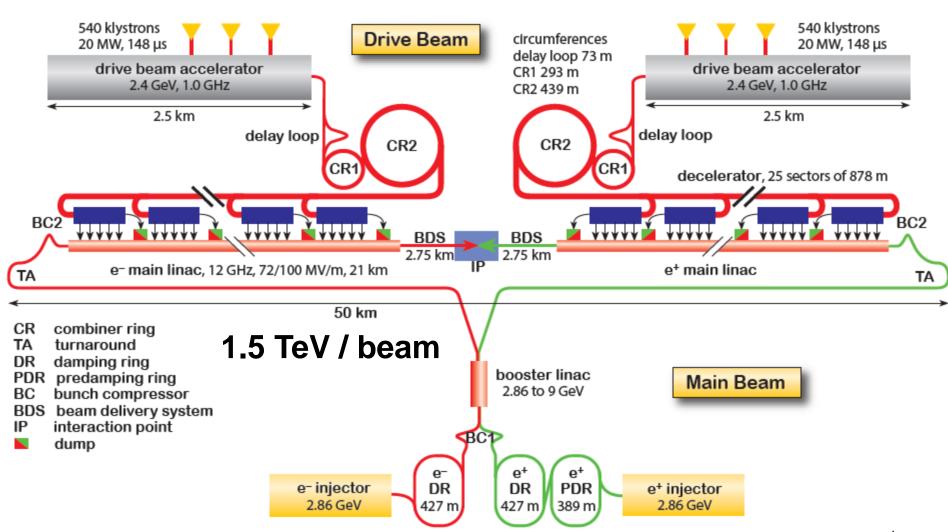
John Adams Institute
Oxford University

On behalf of the CLIC Collaborations
Thanks to all colleagues for materials

CLIC Collaborations

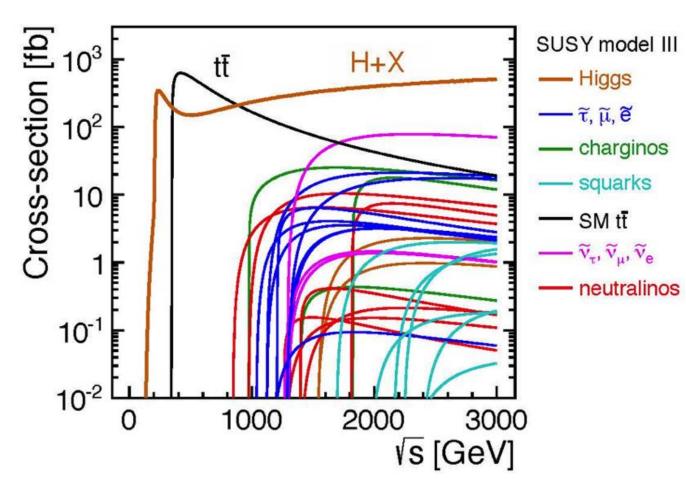
31 Countries - over 70 Institutes

Outline


- Brief introduction to CLIC
- Energy staging
- A few R&D highlights
- Strategic plans → 2019 and beyond

Apologies for skipping many results + details

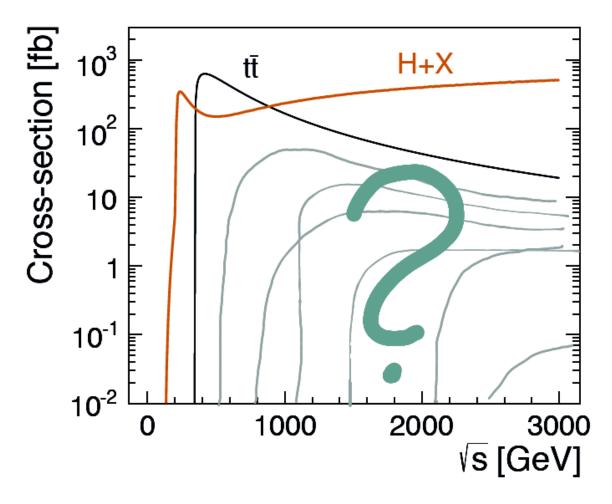
CLIC layout (3 TeV)



CLIC physics context

Energy-frontier capability for electron-positron collisions,

for precision exploration of potential new physics that may emerge from LHC



CLIC physics context

Energy-frontier capability for electron-positron collisions,

for precision exploration of potential new physics that may emerge from LHC

CERN scientific strategy: 3 main pillars

Full exploitation of the LHC:
☐ successful operation of the nominal LHC (Run 2, LS2, Run 3)
□ construction and installation of LHC upgrades: LIU (LHC Injectors Upgrade) and HL-LHC
Scientific diversity programme serving a broad community:
□ current experiments and facilities at Booster, PS, SPS and their upgrades
(Antiproton Decelerator/ELENA, ISOLDE/HIE-ISOLDE, etc.)
□ participation in accelerator-based neutrino projects outside Europe (presently
mainly LBNF in the US) through CERN Neutrino Platform
Preparation of CERN's future:
■ vibrant accelerator R&D programme exploiting CERN's strengths and uniqueness
(including superconducting high-field magnets, AWAKE, etc.)
□ design studies for future accelerators: CLIC, FCC (includes HE-LHC)
☐ future opportunities of scientific diversity programme ("Physics Beyond Colliders" Study Group)

Important milestone: update of the European Strategy for Particle Physics (ESPP), to be concluded in May 2020

CERN scientific strategy: 3 main pillars

Full exploitation of the LHC:
□ successful operation of the nominal LHC (Run 2, LS2, Run 3)
□ construction and installation of LHC upgrades: LIU (LHC Injectors Upgrade) and HL-LHC
Scientific diversity programme serving a broad community:
□ current experiments and facilities at Booster, PS, SPS and their upgrades
(Antiproton Decelerator/ELENA, ISOLDE/HIE-ISOLDE, etc.)
□ participation in accelerator-based neutrino projects outside Europe (presently
mainly LBNF in the US) through CERN Neutrino Platform
Preparation of CERN's future:
□ vibrant accelerator R&D programme exploiting CERN's strengths and uniqueness
(including superconducting high-field magnets, AWAKE, etc.)
□ design studies for future accelera ors: CLIC, FCC (includes HE-LHC)
☐ future opportunities of scientific diversity programme ("Physics Reyond Colliders" Study Group)

Important milestone: update of the European Strategy for Particle Physics (ESPP), to be concluded in May 2020

CERN scientific strategy: 3 main pillars

Full exploitation of the LHC: ■ successful operation of the nominal LHC (Run 2, LS2, Run 3) □ construction and installation of LHC upgrades: LIU (LHC Injectors Upgrade) and HL-LHC Scientific diversity programme serving a broad community: current experiments and facilities at Booster, PS, SPS and their upgrades (Antiproton Decelerator/ELENA, ISOLDE/HIE-ISOLDE, etc.) □ participation in accelerator-based neutrino projects outside Europe (presently mainly LBNF in the US) through CERN Neutrino Platform Preparation of CERN's future: □ vibrant accelerator R&D programme exploiting CERN's strengths and uniqueness (including superconducting high-field magnete, AWAKE, etc ☐ design studies for future accelerators: CLIC, FCC (includes HE-LHC) ☐ future opportunities of scientific description of the first programme ("Physics Reyond Colliders" Study Group)

We are vigorously preparing input for European Strategy PP Update:

- Project Plan for CLIC as a credible post-LHC option for CERN
- Initial costs compatible with current CERN budget
- Upgradeable in stages over 20-30 years

CLIC Review

CLIC Accelerator Study – Review of objectives for the MTP 2016-2019

March 1st, 2016

Report from the Review Panel

Members: O. Brüning; P. Collier, J.M. Jimenez, R. Losito; R. Saban, R. Schmidt;

F. Sonnemann; M. Vretenar (Chair).

Introduction and general remarks

The Panel was very impressed by the enormous amount of work that was presented, by the enthusiasm of the CLIC team and by the wealth of knowledge accumulated by the CLIC study. The CLIC accelerator study has reached a high level of maturity and has been able to establish a large community consisting in about 50 collaborating laboratories and universities, working together on a number of technical challenges

After the publication of the Conceptual Design report in 2012, the CLIC Study is presently in the Development Phase, to prepare a more detailed design and an implementation plan for the next European Strategy Upgrade in 2018-19. This phase is expected to be followed by a Preparation Phase covering the period 2019-25; in case of a positive decision, a construction

Key recommendations

- Produce optimized, staged design: 380 GeV → 3 TeV
- Optimise cost and power consumption
- Support efforts to develop high-efficiency klystrons
- Develop 380 GeV klystron-only version as alternative
- Consolidate high-gradient structure test results
- Develop plans for 2020-25 ('preparation phase')
- Continue and enhance participation in KEK/ATF2

Organisation

- Beam dynamics and design
- X-band RF, including high-efficiency klystrons
- Main linac module and drive beam front end
- Technical systems
- General, incl. ATF2, ILC, CTF3, CLEAR

- (D. Schulte et al)
- (W. Wuensch et al)
- (S. Doebert et al)
- (N. Catalan et al)
- (S. Stapnes et al)

Organisation

- Beam dynamics and design (D. Schulte et al)
- X-band RF, including high-efficiency klystrons (W. Wuensch et al)
- Main linac module and drive beam front end (S. Doebert et al)
- Technical systems (N. Catalan et al)
- General, incl. ATF2, ILC, CTF3, CLEAR (S. Stapnes et al)

New implementation WGs preparing for European Strategy input:

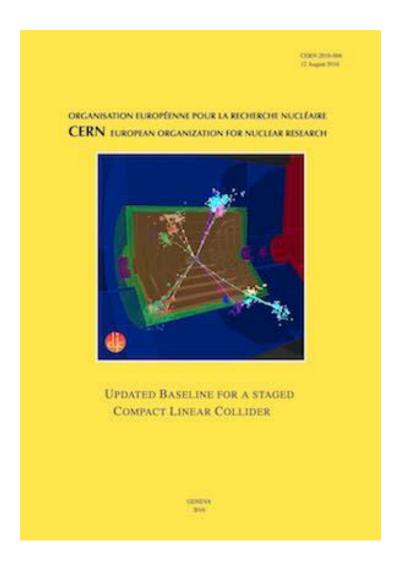
- Baseline parameters and design (D. Schulte et al)
- Civil engineering, infrastructure, siting (J. Osborne et al)
- Cost, power, schedule (S. Stapnes et al)
- Main linac hardware baselining (C. Rossi et al)
- Novel accelerator methods for future CLIC stages (E. Adli et al)

'Rebaselining'

Optimize machine design w.r.t. cost and power for a staged approach to reach multi-TeV scales:

- ~ 380 GeV (optimised for Higgs + top physics)
- ~ 1500 GeV
- ~ 3000 GeV

Adapting appropriately to LHC + other physics findings


Possibility for first physics no later than 2035

Project Plan to include accelerator, detector, physics

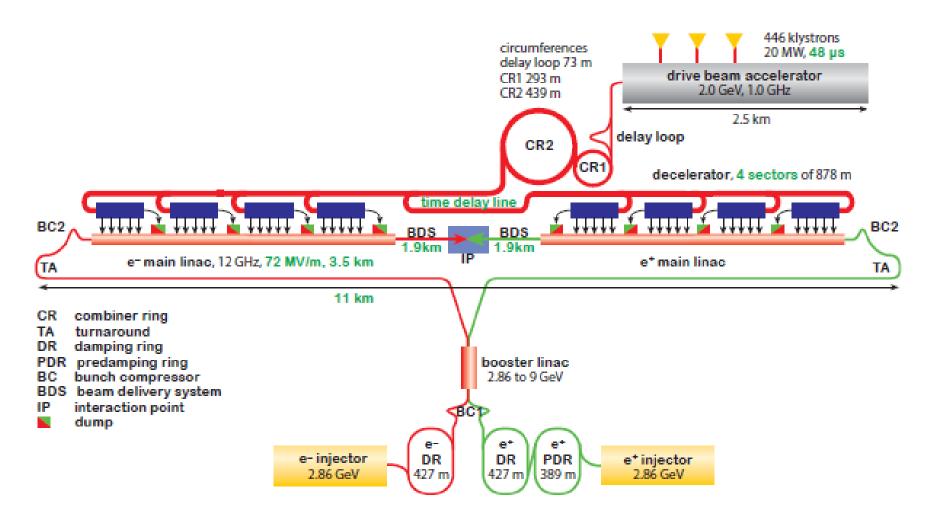
Rebaselining document

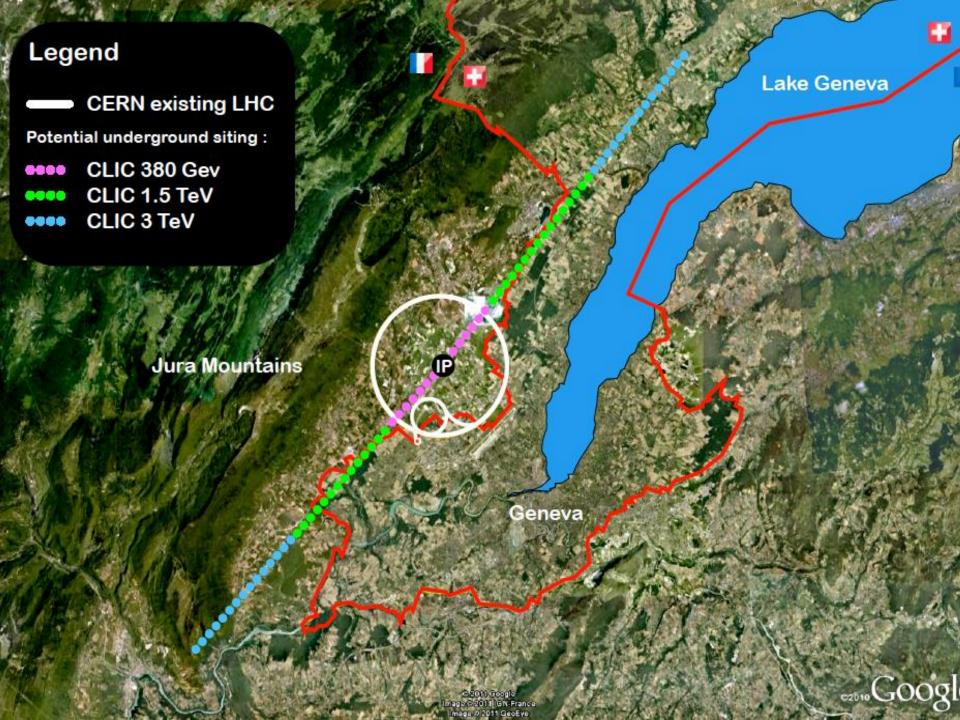
The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e⁺e⁻ collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top measurements. Subsequent stages will focus on measurements of rare Higgs processes, as wells as searches for new physics processes and precision measurements of new states, e.g. states previously discovered at LHC or at CLIC itself. In the 2012 CLIC Conceptual Design Report, a fully optimised 3 TeV collider was presented, while the proposed lower energy stages were not studied to the same level of detail. This report presents an updated baseline staging scenario for CLIC. The scenario is the result of a comprehensive study addressing the performance, cost and power of the CLIC accelerator complex as a function of centre-of-mass energy and it targets optimal physics output based on the current physics landscape. The optimised staging scenario foresees three main centre-of-mass energy stages at 380 GeV, 1.5 TeV and 3 TeV for a full CLIC programme spanning 22 years. For the first stage, an alternative to the CLIC drive beam scheme is presented in which the main linac power is produced using X-band klystrons.

CERN-2016-004

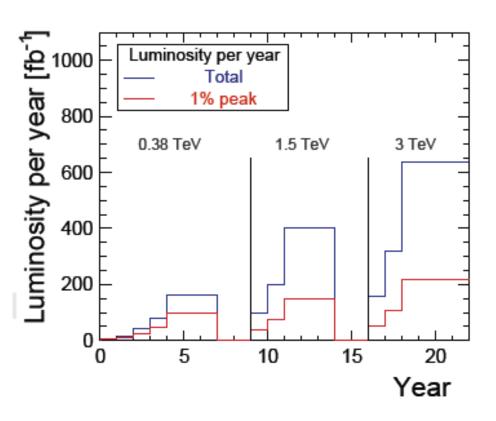
arXiv:1608.07537

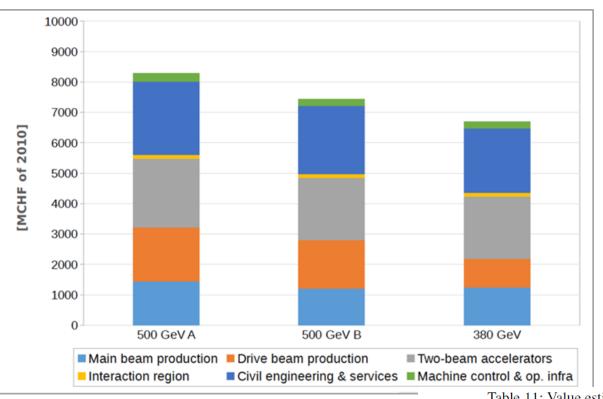
New reference plots for physics, luminosity, power, costs ...


Rebaselining: first stage energy ~ 380 GeV


Parameter	Unit	380 GeV	3 TeV
Centre-of-mass energy	TeV	0.38	3
Total luminosity	10 ³⁴ cm ⁻² s ⁻¹	1.5	5.9
Luminosity above 99% of vs	10 ³⁴ cm ⁻² s ⁻¹	0.9	2.0
Repetition frequency	Hz	50	50
Number of bunches per train		352	312
Bunch separation	ns	0.5	0.5
Acceleration gradient	MV/m	72	100
Site length	km	11	50

New CLIC layout 380 GeV




Updated CLIC run model

Stage	\sqrt{s} (GeV)	$\mathscr{L}_{int} (fb^{-1})$
1	380 350	500 100
2	1500	1500
3	3000	3000

Preliminary cost estimate (380GeV)

For CDR 2012 WBS cost basis

Optimised structures, beam parameters and RF system

Some costs scaled from 500 GeV

Further optimisation ongoing

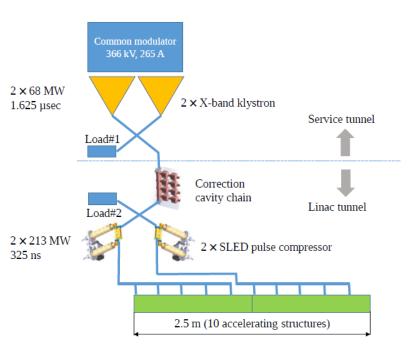
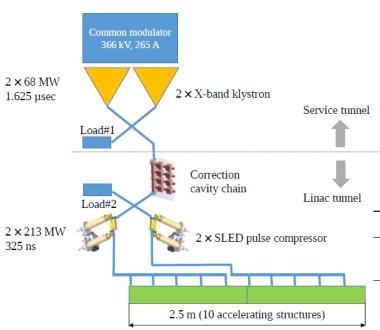

Table 11: Value estimate of CLIC at 380 GeV centre-of-mass energy.

Table 11: Value estimate of CLIC at 380 GeV centre-of-mass energy.		
	Value [MCHF of December 20	10]
Main beam production	12	245
Drive beam production	g	974
Two-beam accelerators	20	038
Interaction region	1	132
Civil engineering & services	21	112
Accelerator control & operational infrastructure		216
Total	66	590


Klystron version (380 GeV)

Klystron version (380 GeV)

First look at costs – preliminary

High-efficiency klystron work very promising – not yet included

Table 12: The parameters for the structure designs that are detailed in the text.

Parameter	Symbol	Unit	DB	K	DB244	K244
Frequency	f	GHz	12	12	12	12
Acceleration gradient	G	MV/m	72.5	75	72	79
RF phase advance per cell	$\Delta \phi$	0	120	120	120	120
Number of cells	$N_{\rm c}$		36	28	33	26
First iris radius / RF wavelength	a_1/λ		0.1525	0.145	0.1625	0.15
Last iris radius / RF wavelength	a_2/λ		0.0875	0.09	0.104	0.1044
First iris thickness / cell length	$d_1/L_{\rm c}$		0.297	0.25	0.303	0.28
Last iris thickness / cell length	$d_2/L_{\rm c}$		0.11	0.134	0.172	0.17
Number of particles per bunch	N	10 ⁹	3.98	3.87	5.2	4.88
Number of bunches per train	$n_{\rm b}$		454	485	352	366
Pulse length	$ au_{ m RF}$	ns	321	325	244	244
Peak input power into the structure	$P_{\rm in}$	MW	50.9	42.5	59.5	54.3
Cost difference (w. drive beam)	$\Delta C_{\mathrm{w. DB}}$	MCHF	-50	(20)	0	(20)
Cost difference (w. klystrons)	$\Delta C_{\mathrm{w.~K}}$	MCHF	(120)	50	(330)	240

Klystron version (380 GeV)

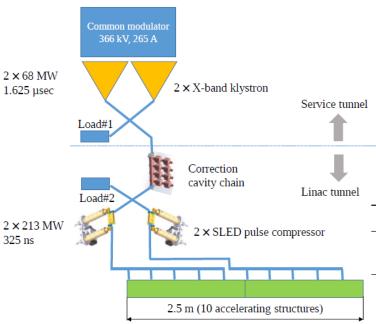
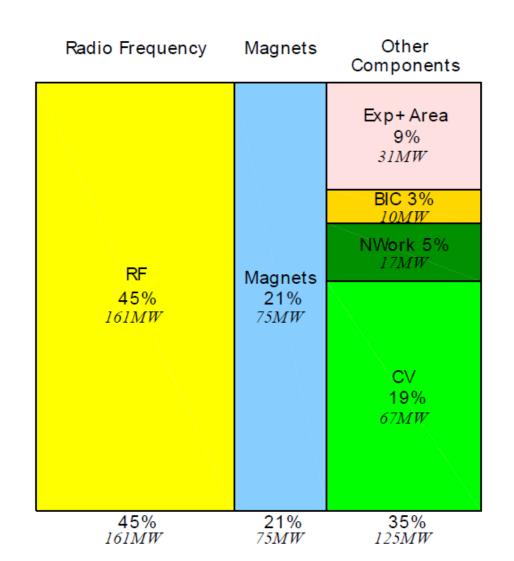
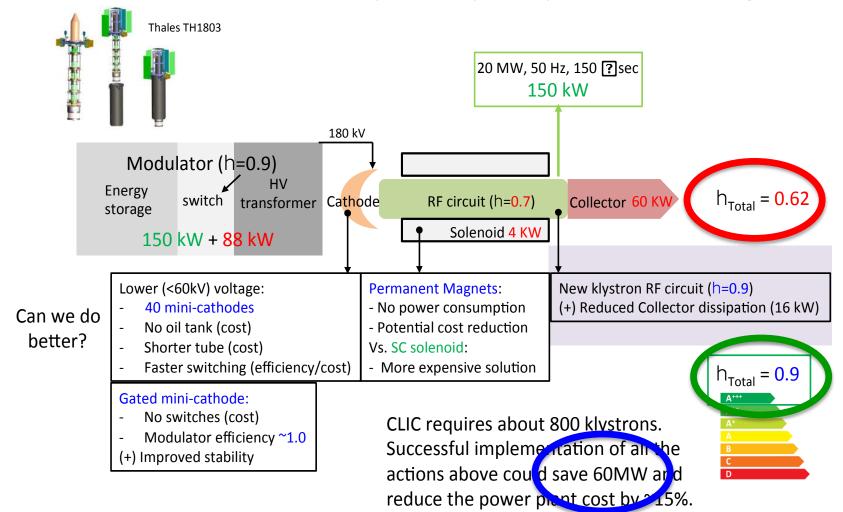


Table 12: The parameters for the structure designs that are detailed in the text.


Parameter	Symbol	Unit	DB	K	DB244	K244
Frequency	f	GHz	12	12	12	12
Acceleration gradient	G	MV/m	72.5	75	72	79
RF phase advance per cell	$\Delta \phi$	0	120	120	120	120
Number of cells	$N_{\rm c}$		36	28	33	26
First iris radius / RF wavelength	a_1/λ		0.1525	0.145	0.1625	0.15
Last iris radius / RF wavelength	a_2/λ		0.0875	0.09	0.104	0.1044
First iris thickness / cell length	$d_1/L_{\rm c}$		0.297	0.25	0.303	0.28
Last iris thickness / cell length	d_2/L_c		0.11	0.134	0.172	0.17
Number of particles per bunch	N	10 ⁹	3.98	3.87	5.2	4.88
Number of bunches per train	$n_{\rm b}$		454	485	352	366
Pulse length	$ au_{ m RF}$	ns	321	325	244	244
Peak input power into the structure	$P_{\rm in}$	MW	50.9	42.5	59.5	54.3
Cost difference (w. drive beam)	$\Delta C_{\mathrm{w. DB}}$	MCHF	-50	(20)	0	(20)
Cost difference (w. klystrons)	$\Delta C_{ m w}$ K	MCHF	(120)	50	(330)	240

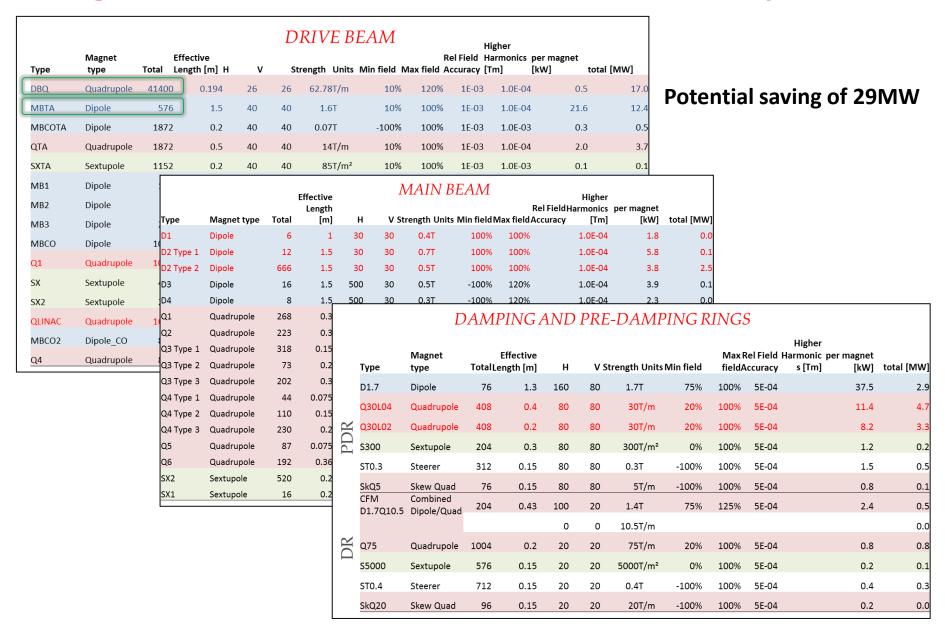
Costings relative to drive-beam version may be lower ~ 5%

AC power (1.5 TeV)



Klystron/modulator efficiencies

ECFA- Linear Collider Workshop 2016

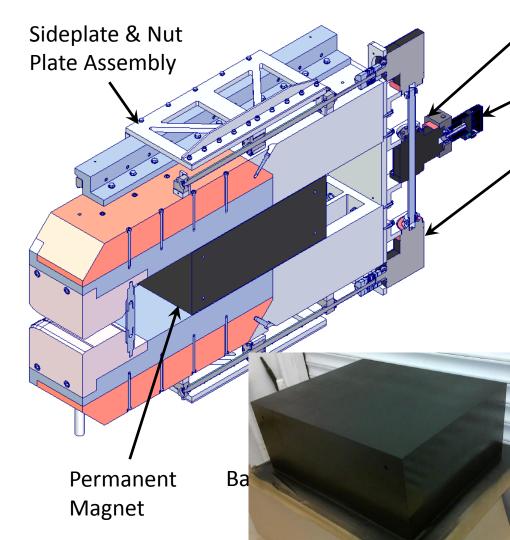


CLIC Multi-beam (6/10 beams) pulsed klystron power balance diagram.

I. Syratchev, June 2016, Santander, Spain.

Magnet Assessment – use PMs wherever possible

Adjustable-field PM prototypes


High Energy Quad

Low Energy Quad

Dipole design

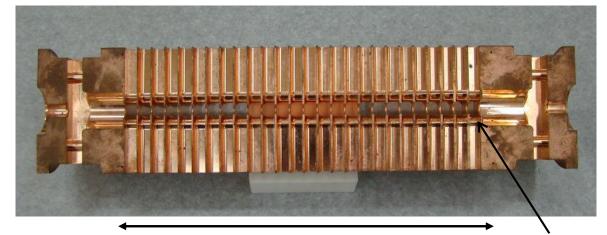
Cost and power updates foreseen

A WBS based bottom up costing and power estimate, for drive-beam and klystron based machines, will be done for the Project Plan in ~2019.

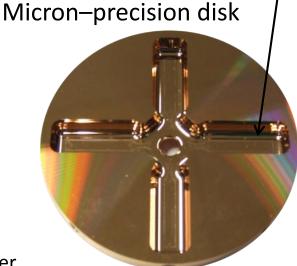
Power and cost related studies that are expected to make significant changes:

Action (X = significant impact expected)	Cost	Power/Energy	Comments
Structure/parameters optimisation, minor other changes	X	Х	Ok for now, 380 GeV, 1.5 10^34
Further possibility: lower inst. luminosity or initial energy (250 GeV)	X	X	Integrated lum. goal can be maintained
Known corrections needed for injectors and Cooling/Ventilation	X	X	Combination of over-estimates and average vs max in CDR
Structure manufacturing	X		Optimise, remove steps, halves
High eff. Klystrons and RF distribution	X	Х	Technical studies where gains can be large
Magnets	?	X	Technical studies
Running scenario (daily, weekly, yearly)		X (energy, cost)	Take advantage of demand changes
Commercial studies, currencies and reference costing date	X	X	Examples: klystrons, CHF, CLIC and FCC will use similar convention

CLIC accelerating structure


Outside

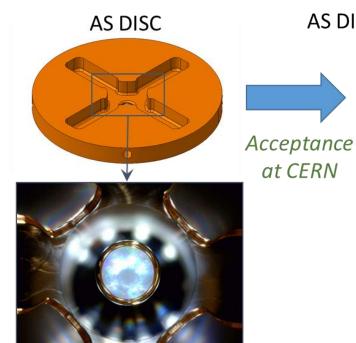
11.994 GHz X-band 100 MV/m Input power ≈50 MW Pulse length ≈200 ns Repetition rate 50 Hz



HOM damping waveguide

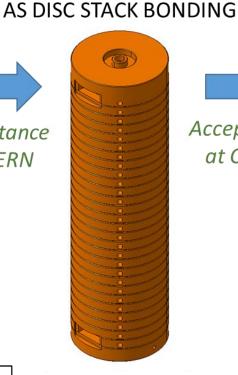
Inside

6 mm diameter beam aperture


Walter Wuensch, CERN

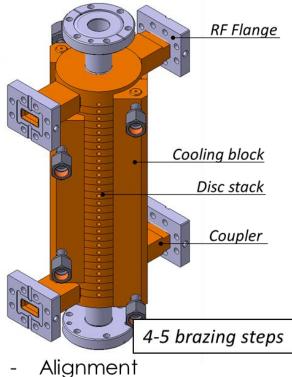
25 cm CLIC Project Review, 1 March 2016

Assembly – towards industrialization



<u>Cell shape accuracy - 0.004 mm</u> <u>Flatness - 0.001 mm</u> Surface roughness - Ra 0.025

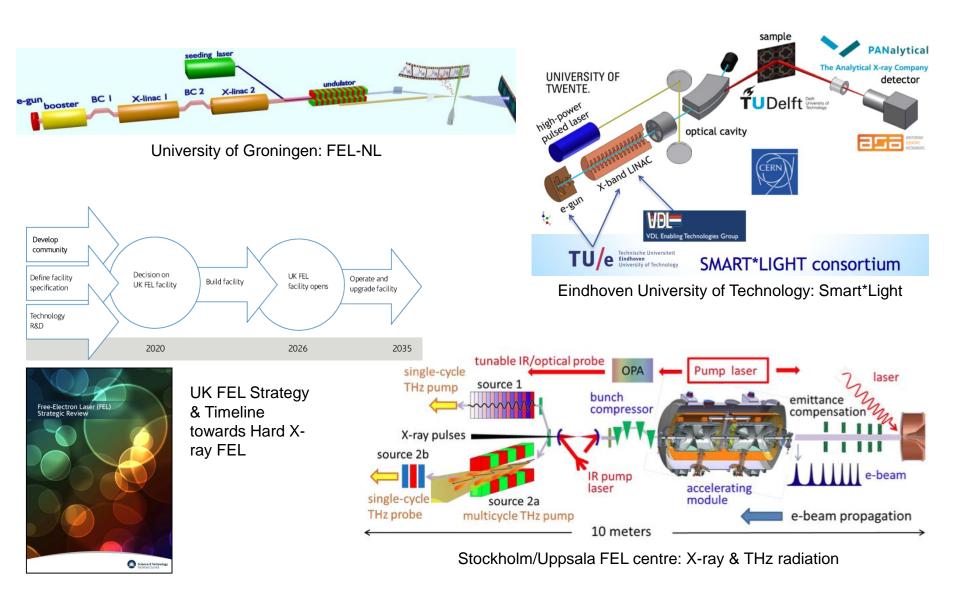
<u>μm</u>


Commercial suppliers:

- 4 qualified companies for UP machining;
- Single-crystal diamond tool required.

Acceptance at CERN


AS ASSEMBLY


- **REQUIREMENTS:** Sp
 - Special tooling
 - Clean environment

Suppliers:

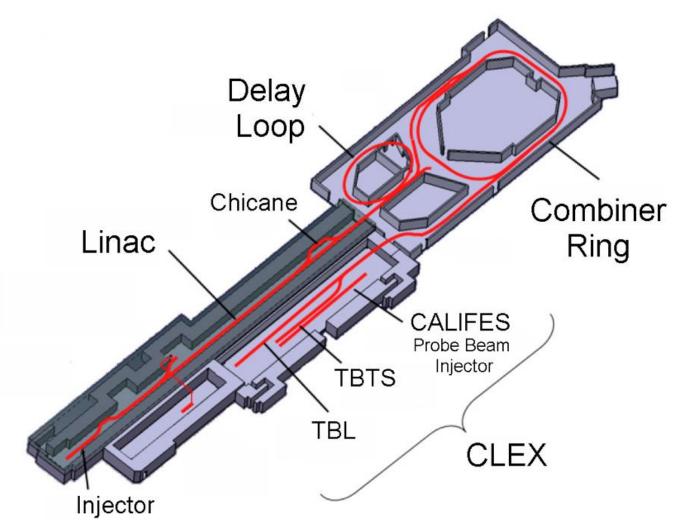
- 3 qualified companies for brazing/bonding operations, supervision by CERN;
- Collaborators.

European National/Institute XFEL Ambitions

Andrea Latina

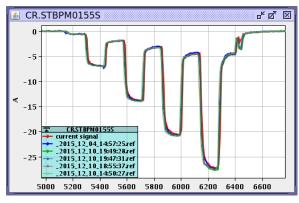
CompactLight – EU Horizon2020 proposal

1 (Coordinator)	Elettra – Sincrotrone Trieste S.C.p.A.	Italy
2	CERN - European Organization for Nuclear Research	International
3	STFC – Daresbury Laboratory	UK
4	SINAP, Chinese Academy of Sciences	China
5	Institute of Accelerating Systems and Applications	Greece
6	Uppsala Universitet	Sweden
7	The University of Melbourne	Australia
8	Australian Nuclear Science and Tecnology Organisation	Australia
9	Ankara University Institute of Accelerator Technologies	Turkey
10	Lancaster University	UK
11	VDL Enabling Technology Group Eindhoven BV	Netherlands
12	Technische Universiteit Eindhoven	Netherlands
13	Istituto Nazionale di Fisica Nucleare	Italy
14	Kyma S.r.l.	Italy
15	University of Rome "La Sapienza"	Italy
16	Italian National agency for new technologies, Energy and sustainable economic development, ENEA	Italy
17	Consorcio para la Construccion Equipamiento y Explotacion del Laboratorio de Luz Sincrotron	Spain
18	Centre National de la Recherche Scientifique, CNRS	France
19	Karlsruher Instritut für Technologie	Germany
20	Paul Scherrer Institut PSI	Switzerland
21	Agencia Estatal Consejo Superior de Investigaciones Científicias	Spain
22	University of Helsinki - Helsinki Institute of Physics	Finland
23	Pulsar Physics	Netherlands
24	VU University Amsterdam	Netherlands
Third Parties	Third party's organisation name	Country
	Universitetet i Oslo - University of Oslo	Norway
	Advanced Research Center for Nanolithography (JRU of VU)	Netherlands


Italy	5
Neth.	4+1
UK	2
Spain	2
Austr.	2
China	1
Greece	1
Sweden	1
Turkey	1
France	1
Germany	1
Switz.	1
Finland	1
Norway	0+1
Internat.	1

submitted March 29th!

CTF3

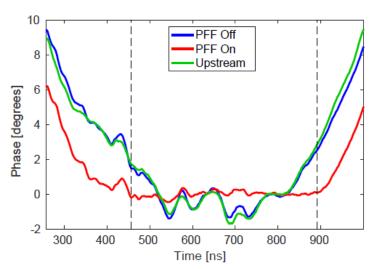


CTF3 Experimental Program 2016

CLIC two-beam module tests

- Power production, stability + control of RF profile (beam loading compensation)
- RF phase/amplitude drifts along TBL, PETS switching at full power
- Alignment tests

Drive Beam


- Dispersion free-steering, dispersion matching, orbit control, chromatic corrections, emittance, stability
- Beam deceleration + optics check in TBL

Drive-beam phase feed-forward tests

- Increase reproducibility
- Demonstrate factor ~ 10 iitter reduction

Ongoing instrumentation tests

- Wake-Field Monitors
- Main and Drive beam BPMs

CALIFES → 'CLEAR' CERN Linear Electron Accelerator for Research

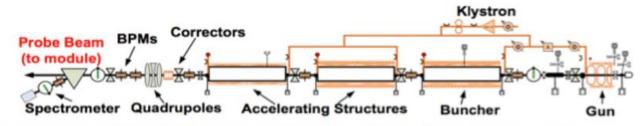


Figure 1: The current CALIFES beam line. The length of the facility (as shown) is ~20m.

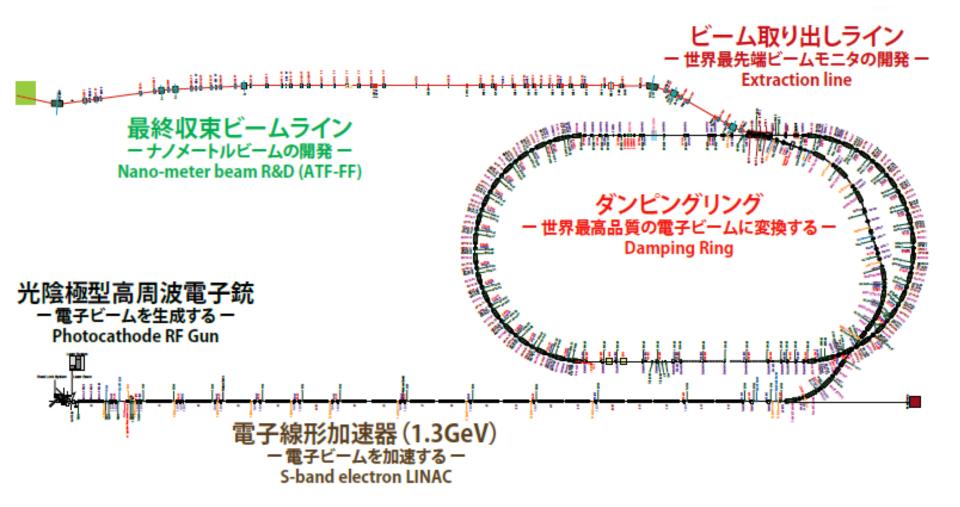

‡	
Beam parameter (end of linac)	Value range
Energy	80 - 220 MeV
Bunch charge	0.01 - 1.5 nC
Normalized emittances	2 um in both planes
Bunch length	300 um -1.2 mm
Relative energy spread	1 %
Repetition rate	1 - 5 Hz
Number of micro-bunches in train	Selectable between 1 and >100
Micro-bunch spacing	1.5 GHz

Table 1: CALIFES parameters.

ATF/ATF2 (KEK)

CLIC + ATF/ATF2

Demonstration of nanometer-scale beam (~41nm achieved)

Beam stabilisation at nanometre level

Also:

Beam tuning techniques

Beam jitter characterisation and amelioration

Beam feedback + feed-forward

Magnet development (hybrid QD0, PM octupoles)

Beam instrumentation: BPMs, transverse beam size ...

DR extraction kicker tests ...

CLIC + ATF/ATF2

Demonstration of nanometer-scale beam (~41nmathieved)

Beam stabilisation at nanometre level

Also:

Beam tuning techniques

Beam jitter characterismion and amelioration

Beam feedback (feed-forward

Magnet development (hybrid QD0, PM octupoles)

Beam Mestrumentation: BPMs, transverse beam size ...

extraction kicker tests ...

Outlook -> European Strategy

Aim to:

- Present CLIC as a credible post-LHC option for CERN
- Provide optimized, staged approach starting at 380 GeV, with costs and power not excessive compared with LHC, and leading to 3 TeV
- Upgrades in 2-3 stages over 20-30 year horizon
- Maintain flexibility and align with LHC physics outcomes

CLIC roadmap

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

Outlook -> European Strategy

Key deliverables:

Project plan: physics, machine parameters, cost, power, site, staging, construction schedule, summary of main tech. issues, prep. phase (2020-2025) summary, detector studies

Preparation-phase plan: critical parameters, status and next steps - what is needed before project construction, strategy, risks and how to address them

https://indico.cern.ch/event/577810/

Q clic workshop 2017

CLIC Workshop 2017

6-10 March 2017 CERN

Europe/Zurich timezone

There is a live webcast for this event.

Overview

Timetable

Registration

cern.ch/event/577810/ cipant List

The **CLIC workshop 2017** covers Accelerator as well as the Detector and Physics studies, with their present activities and programme for the coming years.

For the Accelerator studies, the workshop spans over 5 days: 6th - 10th of March. For CLICdp, the workshop is scheduled from Tuesday afternoon 7th to lunchtime on Friday 10th.

Programme

Common parts:



CERN Courier article

"CLIC steps up to the TeV challenge" by Philipp Roloff and Daniel Schulte (November 2016)

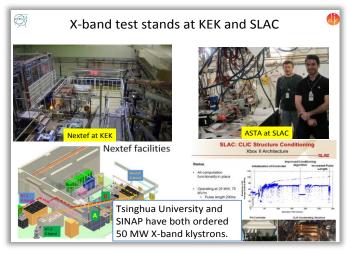
http://cerncourier.com/cws/article/cern/66567

Backup slides

Current rebaselined parameters

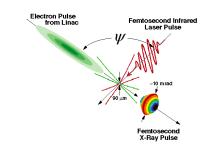
Table 8: Parameters for the CLIC energy stages. The power consumptions for the 1.5 and 3 TeV stages are from the CDR; depending on the details of the upgrade they can change at the percent level.

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	f_{rep}	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m pulse}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	£	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathcal{L}_{0.01}$	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	0.9	1.4	2
Main tunnel length		km	11.4	29.0	50.1
Charge per bunch	N	10 ⁹	5.2	3.7	3.7
Bunch length	σ_z	μm	70	44	44
IP beam size	σ_{x}/σ_{y}	nm	149/2.9	$\sim 60/1.5$	~ 40/1
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm		660/20	660/20
Normalised emittance	$\varepsilon_{x}/\varepsilon_{y}$	nm	950/30	_	_
Estimated power consumption	$P_{ m wall}$	MW	252	364	589

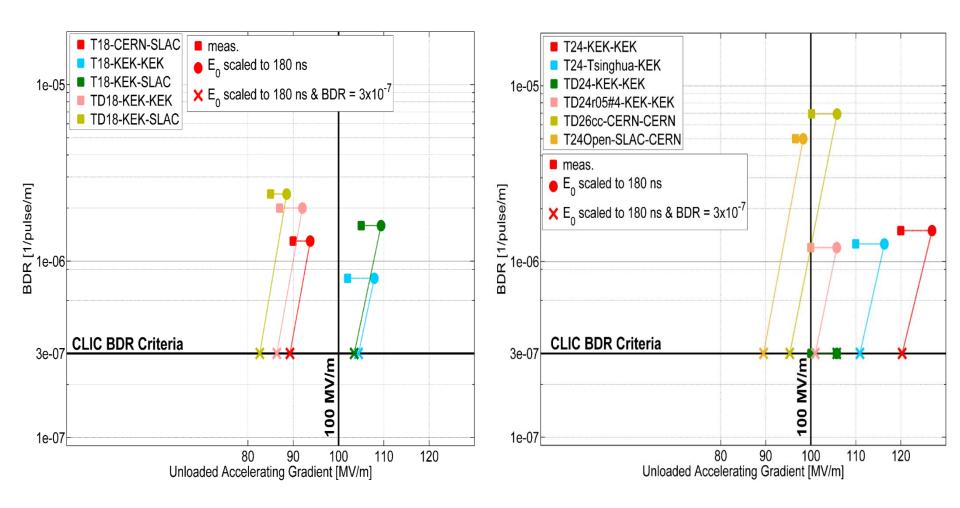


Existing and planned Xband infrastructures

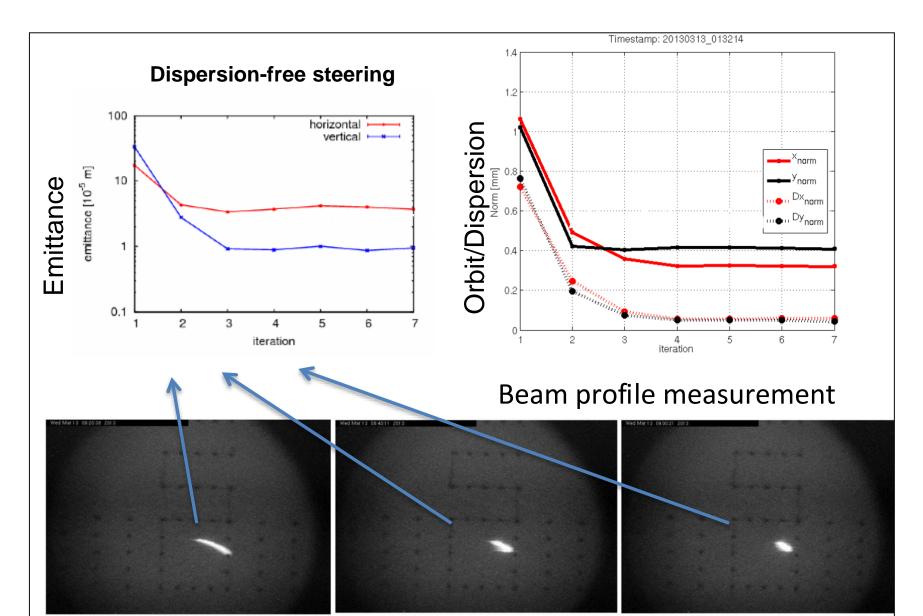
CERN	XBox-1 test stand	50 MW	Operational
	Xbox-2 test stand	50 MW	Operational
	XBox-3 test stand	4x6 MW	Commissioning
KEK	NEXTEF	2x50 MW	Operational, supported in part by CERN
SLAC	ASTA	50 MW	Operational, one structure test supported by CERN
	Design of high-efficiency X-band klystron	30 MW	Under discussion
Trieste	Linearizer for Fermi	50 MW	Operational
PSI	Linearizer for SwissFEL	50 MW	Operational
	Deflector for SwissFEL	50 MW	Planning
DESY	Deflector for FLASHforward	50 MW	Planning (note first two may share power unit)
	Deflector for FLASH2	50 MW	Planning
	Deflector for Sinbad	50 MW	Planning



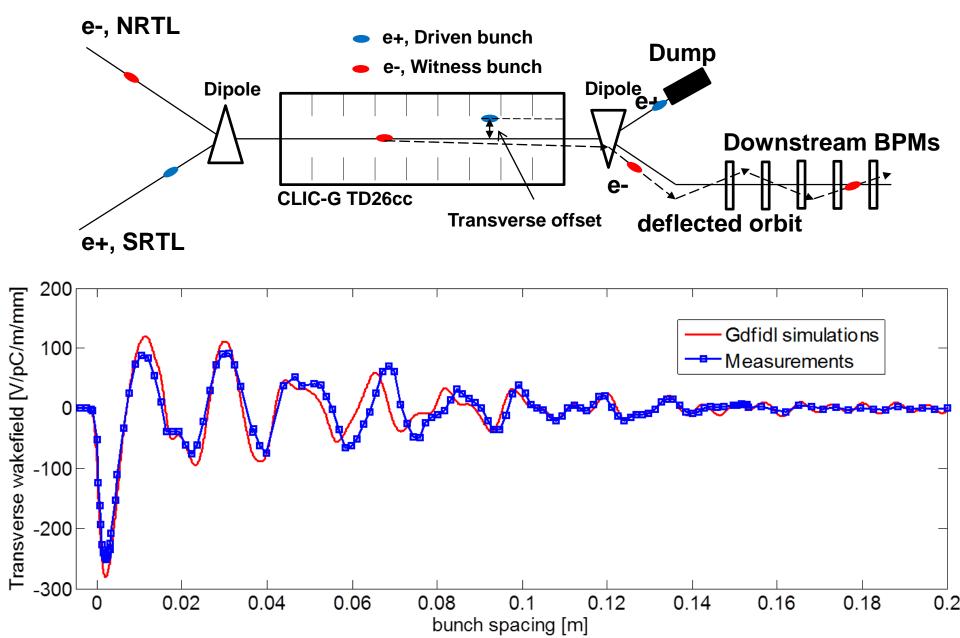
Existing and planned Xband infrastructures


Australia	Test stand	2x6 MW	Proposal, loan agreement from CERN	
Eindhoven	Compact Compton source	6 MW	Proposal, request for loan from CERN	
Uppsala	Test stand	50 MW	Proposal, request for loan of spare klystron from CERN	
Tsinghua	Deflector for Compton source	50 MW	Ordered	
	Linearizer for Compton source	6 MW	Planning	
SINAP	Linearizer for soft X-ray FEL	6 MW	Ordered	
	Deflectors for soft X-ray FEL	3x50 MW	Planning	
Valencia	S-band test stand	2x10 MW	Under construction	
STFC	Linearizer	6 MW	Under discussion	
	Deflector	10 MW	Under discussion	
	Accelerator	tbd	Under discussion	

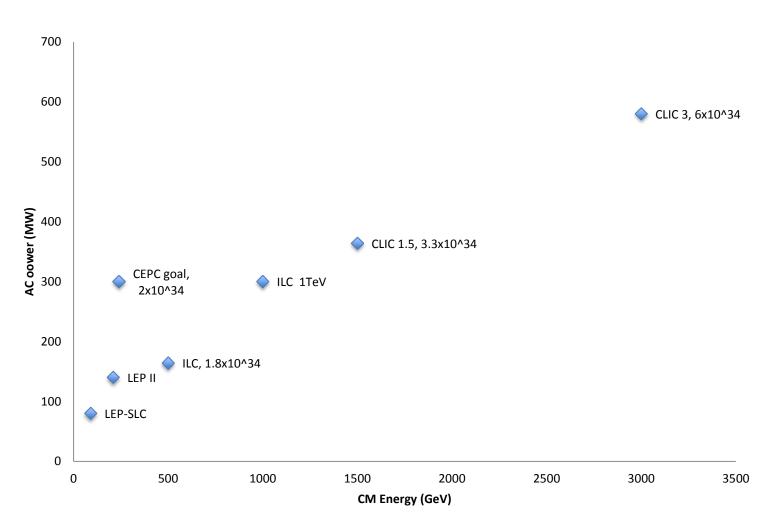
Accelerating gradient summary


Original test structure geometry.

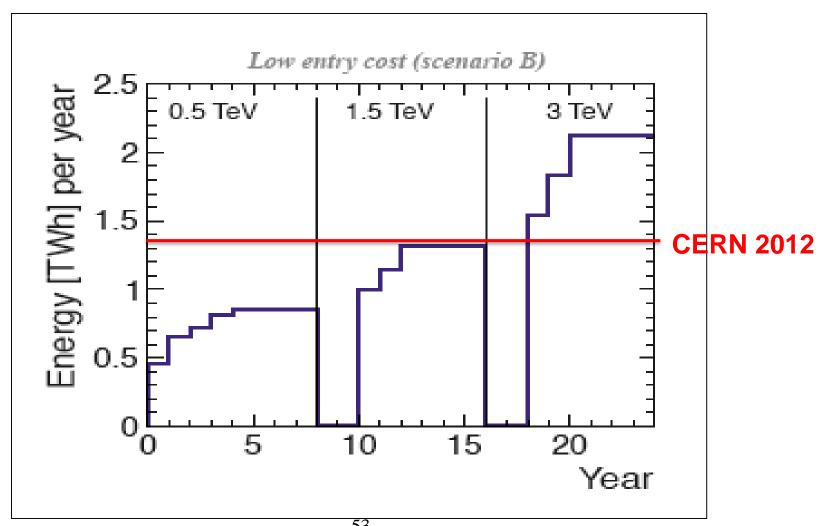
Baseline geometry, CLIC-G.
Newly optimized geometry, based on these results,
CLIC-G* now in production pipeline.

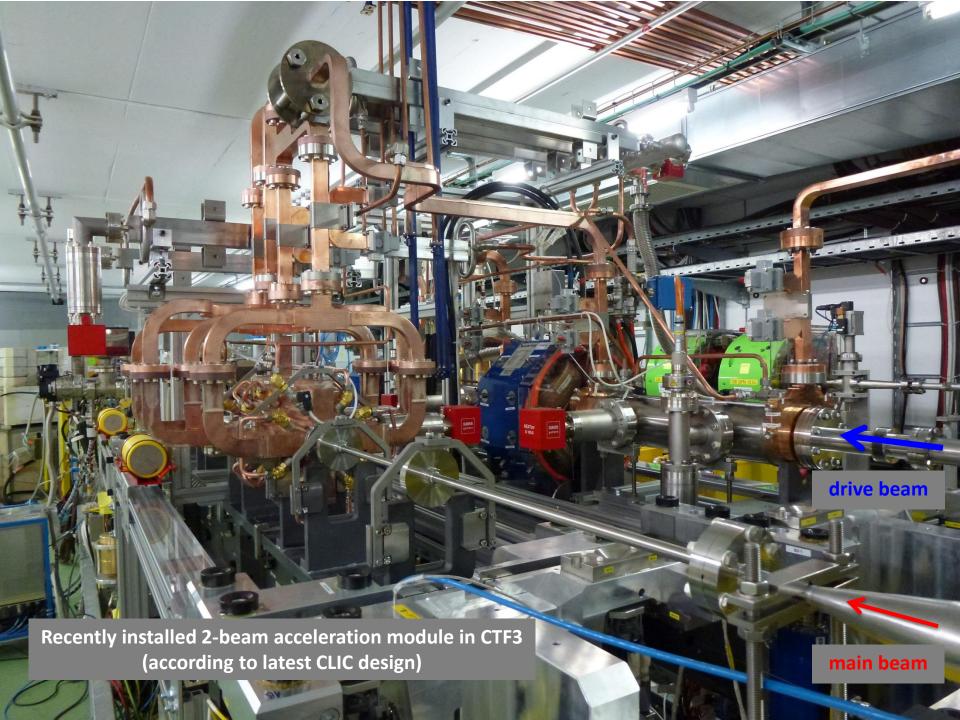


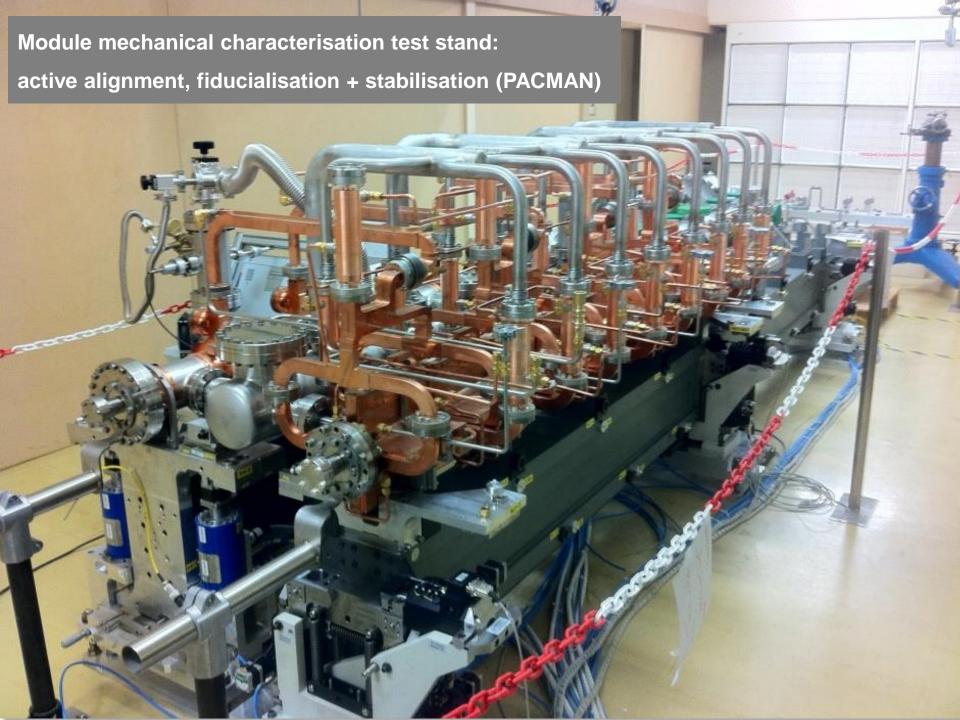
Beam tuning at FACET (SLAC)


FACET measurements of wakefields

AC power







Energy consumption

CLIC Higgs physics processes

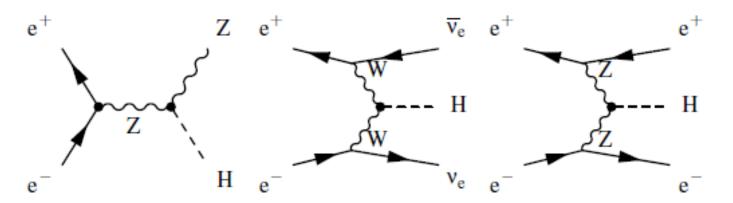


Figure 2: The three highest cross section Higgs production processes at CLIC.

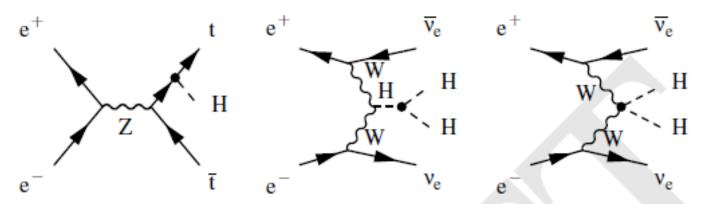
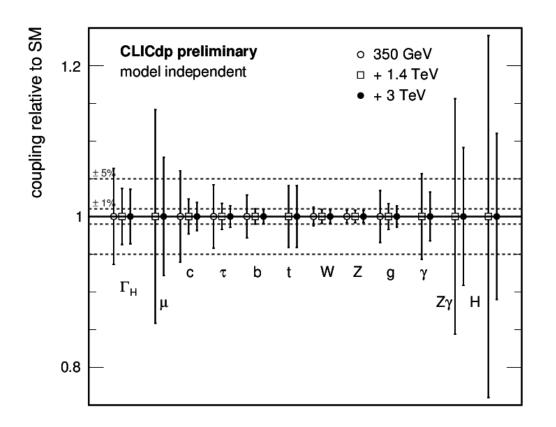
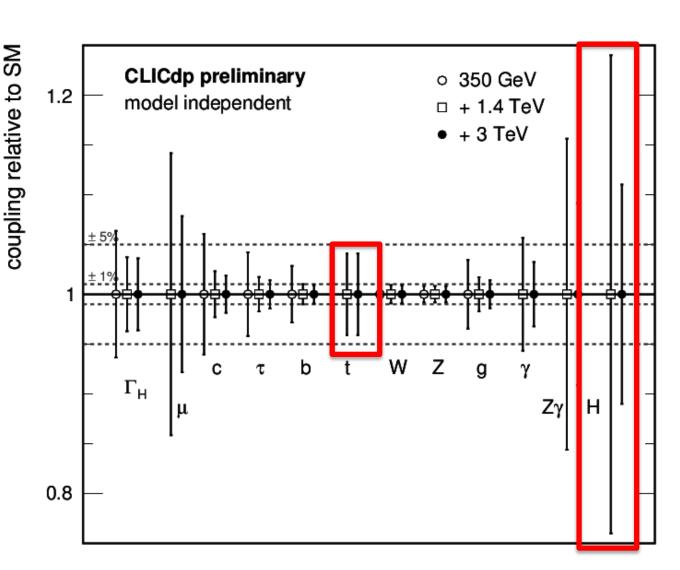



Figure 3: The main processes at CLIC involving the top Yukawa coupling g_{Htt} , the Higgs boson trilinear self-coupling λ and the quartic coupling g_{HHWW} .

CLIC Higgs physics capabilities

Parameter	Relative precision				
	350 GeV	+ 1.4 TeV	+ 3TeV		
	500 fb ⁻¹	+ 1.5 ab ⁻¹	+ 2ab ⁻¹		
g _{HZZ}	0.8%	0.8%	0.8%		
g _{HWW}	1.3%	0.9%	0.9%		
g _{Hbb}	2.8%	1.0%	0.9%		
	6.0%	2.3%	1.9%		
8ηττ	4.2%	1.7%	1.4%		
8ημμ		14.1%	7.8%		
g _{Htt}	3.6%	4.1% 1.7%	1.4%		
$g_{\rm H\gamma\gamma}^{\dagger}$ $g_{\rm HZ\gamma}^{\dagger}$	_	5.7% 15.6%	3.2% 9.1%		
$\Gamma_{\rm H}$	6.4%	3.7%	3.6%		



CLIC Higgs physics capabilities

Higgs couplings to heavy particles benefit from higher c.m. energies:

> ttH ~ 4% HH ~ 10%

CLIC Higgs physics paper

Higgs Physics at the CLIC Electron-Positron Linear Collider (CLICdp collaboration paper)

40 pages, 123 authors, >25 full-simulation studies

CLICdp-Pub-2016-001 and <u>arXiv:1608.07538</u> (29/8/2016)

Submitted to EPJC – now addressing referees' comments

CLIC top physics example: form factors (380 GeV)

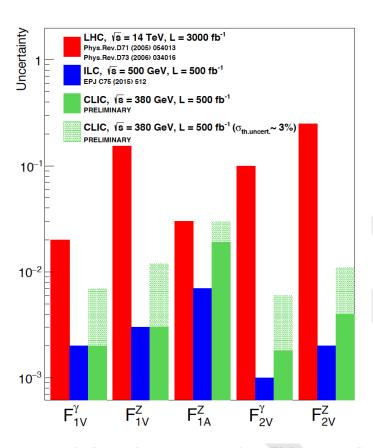
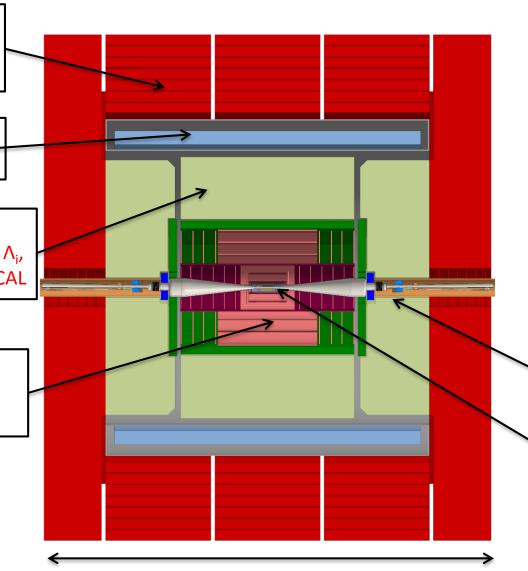


Figure 9: Uncertainties of the top quark form factors (assuming SM values for the remaining form factors) compared between estimations for LHC, ILC and CLIC [10]. The form factors are extracted from the measured forward backward asymmetry and cross-section. For the ILC, $\pm 80\%$ e⁻ polarisation and $\mp 30\%$ e⁺ polarisation are considered and for CLIC, $\pm 80\%$ e⁻

New CLIC detector model


return yoke (Fe) with muon-ID detectors

superconducting solenoid, 4 Tesla

fine grained (PFA) calorimetry, 1 + 7.5 Λ_i , Si-W ECAL, Sc-FE HCAL

silicon tracker, (large pixels / short strips)

Note: final beam focusing is outside the detector

11.4 m

end-coils for field shaping

forward region with compact forward calorimeters

ultra low-mass vertex detector, ~25 μm pixels

31