

Machine Learning CWP

Sergei V. Gleyzer University of Florida

CWP Workshop Annecy June 26, 2017

WG Charge

Scope: Machine Learning algorithms play an important role in many facets of today's HEP data analysis, dataprocessing and detector applications. Machine-learning tools already form an important part of HEP software. To overcome the challenges related to data-processing and analysis of upcoming very large HEP data-sets, it is important to plan ahead for how HEP machine-learning software and tools develop. This group will work on both identifying the challenges related to machinelearning software in HEP and proposing possible solutions and a community roadmap towards better **HEP-ML** software.

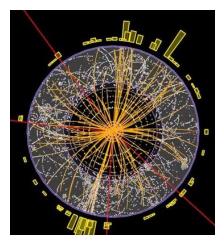
Challenges

- Rare physics signals
- High backgrounds

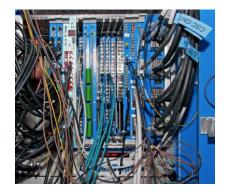
High-pileup and event complexity

Under these conditions ML algorithms out-perform traditional approaches

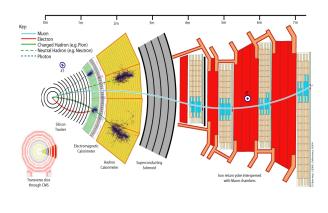
R&D Investment

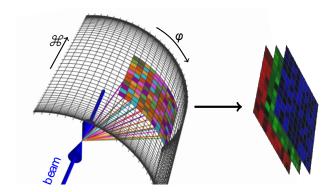


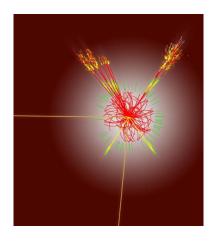
- More powerful, easier to use tools
- Much more flexible and integrated eco-system that exploits best data formats, algorithms and hardware
- Ability to apply algorithms in realtime environments
- Training the community

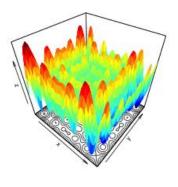


Interesting areas




Particle Tracking


Trigger


Fast Simulation

Imaging Calorimetry

Object Identification

Simulation

R&D

- Fast Detector Simulation
- Deep learning applications
- Pattern Recognition in Tracking and Trigger
- Imaging techniques for physics
 - Calorimetry, physics object and event identification and reconstruction
- Feature extraction and unsupervised learning
- Regression

Status

Editing in progressCWP-ML

- Key ideas in place
 - Review which parts are more broad to HEP
 - Expect to have a first draft by end of workshop

- A lot of cross-experimental benefit and progress from ML software and tools
- Leveraging external tools and algorithms developed outside of HEP an important component

Topics

- A. External and Internal ML Tools
- B. New applications of ML and R&D
- C. Resources and related: Interactive, HPC, Cloud, GPUs, Storage
- D. Bridges to other communities
- E. Training the Community

Cross-cutting

Naturally cross-cutting topic:

- Event reconstruction
- Software and trigger
- Generators
- Data analysis
- Visualization
- Training

Primary Activities

- HSF Workshop in January
- IML Workshop in April
- DS@HEP Workshop in May
- HSF Annecy Workshop

Primary Organizers

Sergei Gleyzer (CMS)

Steven Schramm, Mathew Feichert (ATLAS)

Paul Seyfert (LHCb)

Fernanda Psihas (NOvA)

Many individual contributors

- Aaron Sauers
- Aashrita Mangu (CS)
- Adam Aurisano (NOvA)
- Adrian Bevan (ATLAS)
- Alessandra Forti (ATLAS)
- Alexander Kurepin (ALICE)
- Alexander Radovic (NOvA)
- Alexei Klimentov (ATLAS)
- Amir Farbin (ATLAS)
- Andrey Ustyuzhanin (Yandex, LHCb)
- Antonio Limosani (ATLAS)
- Ariel Schwartzman (ATLAS)
- Attilio Picazio
- Aurelius Rinkevicius (CMS)
- Ben Hooberman (ATLAS)
- Benedikt Hegner (SFT)
- Bob Stienen
- Claire David (ATLAS)
- Daniele Bonacorsi (not only as CMS in this
- David Rousseau (ATLAS)
- Dick Greenwood
- Dorian Kcira
- Douglas Davis
- Dustin Anderson (CMS)
- Elias Coniavitis

- Elias Coniavitis
- Federico Carminati (SFT)
- Fernanda Psihas (NOvA)
- Filip Siroky
- Gabriel Perdue (MINERvA)
- Giles Strong (CMS)
- Gilles Louppe (ATLAS)
- Gordon Watts (ATLAS)
- Graeme Stewart
- Hans Pabst (Intel)
- Harvey Newman (CMS)
- Helge Meinhard
- Horst Severini
- Ian Stockdale
- Igor Lakomov (ALICE)
- Ilija Vukotic (ATLAS)
- Jamal Rorie (CMS)
- Javier Duarte (CMS)
- Jean-Roch Vlimant
- Jim Kowalkowski
- Jim Pivarski (CMS)
- Jochen Gemmler (Belle2)
- Johannes Junggeburth
- John Harvey (SFT)
- Jonas Eschle (LHCb)
- Jonas Graw

- Jordi Garra-Tico (LHCb)
- Juan Pedro Araque Espinosa (ATLAS)
- Karen Tomko
- Kevin Lannon (CMS)
- Kim Albertsson (ATLAS)
- Konstantin Kanishchev (AMS-02)
- Konstantin Skazytkin (ALICE)
- Kyle Cranmer (ATLAS)
- Laurent Basara
- Lindsey Gray (CMS)
- Lorenzo Moneta (ROOT)
- Louis Capps
- Lukas Heinrich (ATLAS)
- Luke Kreczko
- Maria Girone (CERN openlab)
- Mario Campanelli (ATLAS)
- Mario Lassnig (ATLAS)
- Mark Neubauer (ATLAS)
- Martin Vala
- Matthew Feickert (ATLAS)
- Mauro Verzetti (CMS)
- Meghan Kane (SoundCloud, formerly @M
- Michael Andrews (CMS)
- Michael Kagan (ATLAS)
- Michael Williams (LHCb)
- Michela Paganini (ATLAS)
- Michele Floris (ALICE)

- Mike Sokoloff (LHCb)
- Nicolas Köhler
- Nuno Filipe Castro (ATLAS)
- Paolo Calafiura (ATLAS)
- Paul Glaysher (ATLAS)
- Paul Seyfert (LHCb)
- Pere Mato (SFT)
- Piero Altoe (NVidia)
- Przemysław Karpiński (CERN openlab)
- Rob Kutschke
- Ryan Reece (ATLAS)
- Savannah Thais
- Sean-Jiun Wang (CMS)
- Sergei Gleyzer (CMS)
- Seth Moortgat (CMS)
- Sofia Vallecorsa (SFT)
- Stefan Wunsch (CMS)
- Steven Schramm (ATLAS)
- Taylor Childers (ATLAS)
- Thomas Keck (Belle2)
- Tom Hacker
- Uzziel Perez (CMS)
- Valentin Kuznetsov (CMS)
- Vladimir Gligorov (LHCb)
- Wahid Bhijmi (Daya-Bay)
- Wenjing Wu
- Xavier Vilasís-Cardona
- Omar Zapata (http://oproject.org)