
Gaurav Kaul

Systems Architect, DCG

Agenda

The Challenge : “Memory Wall”/Von Neumann Bottleneck

Traditional Solutions

New Technology Opportunities – 3D Stacking, NVM, MCP (Xeon+FPGA)

Programming Model for Near Data Processing

Example Applications – HPC Simulation using GANs/DL

Summary / Call-to-Action

The Memory Wall

3

The Memory Wall (contd.)

4

Von Neumann Bottleneck

The term "Von Neumann bottleneck" was coined by John

Backus in his 1977 ACM Turing Award lecture.

According to Backus:

“Surely there must be a less primitive way of making big changes in the

store than by pushing vast numbers of words back and forth through the

Von Neumann bottleneck. Not only is this tube a literal bottleneck for the

data traffic of a problem, but, more importantly, it is an intellectual

bottleneck that has kept us tied to word-at-a-time thinking instead of

encouraging us to think in terms of the larger conceptual units of the task

at hand. Thus programming is basically planning and detailing the

enormous traffic of words through the Von Neumann bottleneck, and

much of that traffic concerns not significant data itself, but where to find

it.”

http://en.wikipedia.org/wiki/File:John_Backus.jpg

Conventional computing architecture is CPU-centric

– All data is moved to/from memory for computation

The “Memory Wall” (aka Von Neumann bottleneck)

– Latency/Bandwidth Perf.; Mitigations expensive

– Data movement Energy; Significant

Traditional approach: Memory in Processor

– Registers, cache hierarchy, dedicated buffers

– Reduce data movement by caching and re-use

The Challenge

CPU MEM

CPU MEM

CPU MEM
$R

Memory Wall : Performance

Latency

 Ever larger, deeper caches

 uArch (Spec.,OOO, HT, …)

 Data prefetching (sw/hw)

 Fast (optical?) interconnect

 …

Bandwidth

 More memory controllers

 More/Faster mem. channels

 3d-DRAM stacking

 …

 Die$$$

 Die$$, Complexity(TTM)

 Application dependent

 Tech$$, E-O-E overhead

 Die$, Complexity(TTM)

 Pin$$, Power, Elec(TTM)

 Tech$$Traditional approaches to scaling the
“memory wall” are expen$ive

Memory Wall : Energy

Energy/Byte :: Energy/Operation == 1 :: 3

Nominally, an operation needs upto 24 bytes (~17 nJ/Op)

Caching+reuse reduces data movement energy (~1.2 nJ/Op)

Data
Movement
(nJ/Byte)

Compute
(nJ/Op)

0.7

0.052.0

Data movement across the memory wall
limits performance and is energy expensive!

Processor Die

DRAM Bulk
Memory

L2 L3$
Mem

Ctrlr

L1 L1

L1 L1

Cores

Emerging Tech Opportunities

eDRAM

 Logic compatible memory tech

 High BW Memory Cache

 On-die or Multi-chip Pkg

 Reduces nJ/Byte by ~5x

3D Stacked Memory

(HBM/HMC)

 Low power/High BW interface

 Stacked memory w/ logic buffer

 Higher density DRAM arrays

 Reduces nJ/Byte by ~5x

Logic Buffer

DRAM stack

Memory IF

A new level in the memory hierarchy
that combines logic + memory

PCB
Socket

HDI Interposer
Package

μP I/O

PCB
Socket

Package

μP
eDRAM
L4$

Logic Process

eDRAM

Cache

The NDP Spectrum

Execute arith & address ops near memory sub-system to:

 Reduce data movement costs (energy, performance)

 Enable wide parallel operations (exploit memory BW)

 Complement, even improve, caching

NDPNDP

Enables a “continuum” of compute
into the memory hierarchy

Processor Die

DRAM Bulk
Memory

L2 L3$
Mem
Ctrlr

L1 L1

L1 L1

Cores
Logic+

Memory

NDP Primitives

NDP Primitives

Computer

Vision
Rendering

Physical

Simulation

Financial

Analytics
Database

High Perf

Computing
Graphics

Operating

Systems

Medical

Imaging

Support

Vector M/c

Particle

Filters

Partial

Diff. Eqn

Collision

Detection

Monte

Carlo

Linear

Comp.Prob

Lang.Proc

Int.Pt.Meth

Freq.I.Min

K-Means

Level

Set

FFT

Conj. Grad

Image

Filters

Keyword

Searching

TCP/IP

Sorting

Volume

Rendering

use

Basic dense/sparse matrix operations

Diverse set of application domains
can benefit from NDP

Block

Copy/Zero

Gather/

Scatter

Data

Comparison

Stream

Filters

Atomic

Reduction

Synchron-

ization

use

use

Application Domains

Computational Kernels

Matrix Operations

Processor Die

DRAM Bulk
Memory

L2 L3$
Mem
Ctrlr

L1 L1

L1 L1

Cores

Logic+
Memory

Case Study: Gather/Scatter CiM

Extends LRB gather/scatter

with CiM benefits:

Reduced data movement

Increased cache effectiveness

Increased access concurrency

Gather/Scatter CiM improves cache locality
through optimized data movements

CiM Gather/Scatter unit

0%

20%

40%

60%

80%

100%

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

F
F

T

T
ra

n
s
p
o

s
e

S
o
lv

e
r

S
M

V
M

Matrix Transpose Sparse Matrix
E

n
e

rg
y
 S

a
v
in

g
s

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
c
e

Performance Increase Energy Savings

Processor Die

DRAM Bulk
Memory

L2 L3$
Mem
Ctrlr

L1 L1

L1 L1

Cores

Logic+
Memory

Case Study: Stream Filter CiM

CiM : 4 FMACs

DATA

 Recovers “Lost” BW in
processor

– Control and buffering
overhead

 Increases cache effectiveness

– By avoiding cache pollution

 Reduces data movement

– If implemented in
Logic+Memory

DATA

0.5

1

1.5

2

2.5

HSW Memory Channel BW eDRAM BW

R
e

la
ti
v
e

P

e
rf

o
rm

a
n

c
e

CiM SpeedUp (v. 2Thread
cache optimized)

scale (complex
compute)

Filter CiM improves performance
through better use of bandwidth

14

Market Motivation: The Evolving Hierarchy of Storage
The Hot Get’s Hotter and the Warm Tier Tips

Hot Tier

Warm Tier

Cold Tier

NAND

+HDDs

HDDs

HDDs

3D

XPoint

3D

NAND

HDDs

Memory Domain

Driving the Transition

to the All FLASH

Data Center

3D NAND Economics

Drive the Warm Tier

to Transition from HDDs

to FLASH

15

Ruler SSD Form Factor Project
Objectives• Maximize FLASH TCO: Understand the TCO and engineer to exploit it

• 3D NAND economics are enabling the tipping point. How can we accelerate this?

• Avoid the limitations of classical SFF solutions

• Enable scale: Desired a form factor that will support Very High system performance

• 1PB per Rack U was our stake in the ground objective

• Now you can buy leading edge HPC bandwidth/IOPS

• Enable dynamic range: Desired a form factor that can efficiently service a wide range of
system configurations and performance points

• Cover the needs of both Scale Up and Scale Out platforms

• Support wide range of configurations from modest to high performance

• Attack system cost/complexity points

• Learn from legacy form factor experience

16

7mm

15mm

110mm

M.2 U.2 AIC

x8

x4

6-8.25W

8, 10, 12W

10 - 25W

30, 40W

25WForm Factors
*

* Other names and brands may be claimed as the property of others

Common PCIe Solid State Storage
Form Factors

17

Front Loading, Hot Swappable, Ruler
SSD (RSSD)
• RSSDs are optimized for high density 1U storage

• Modules are 38.6mm tall and packed

at a 12.5mm pitch

• RSSDs are front loading and hot swappable

• RSSDs natively incorporate LEDs and a

latching mechanism

9
.9

m
m

3
8
.6

m
m

324mm

18

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiAkpOx9MPLAhVX7mMKHfu4ANYQjRwIBw&url=http://www.woodrowrulers.com/products/rulers/metric/12-brassmaple-ruler-with-an-inch-scale/&psig=AFQjCNFUIUScsz80-ECZaYDFhuZFGQAH8A&ust=1458173083609024

~
6
4
G

B
/s

 O
v
e
ra

ll

~
1
6
G

B
/s

 E
a
ch

~
1
2
8
G

B
/s

 O
v
e
ra

ll

~
1
.5

G
B
/s

 E
a
ch

1U JBOD
Allows Provisioning Compute Resources to the Application’s Needs

RSSD
Array

F
a
b
ri
c

I/
F

F
a
b
ri
c

I/
F

PCIe
SW

PCIe
SW

45W ea

~90W Overall

~20W ea

~640W Overall
Power

3
2
 X

 2

P
C
Ie

 G
e
n
3

3
2
 X

 2

P
C
Ie

 G
e
n
3

X16 PCIe Gen3

X16 PCIe Gen3

X16 PCIe Gen3

X16 PCIe Gen3

19

D
u

a
l
P

o
rt

R
S

S
D

 A
rr

a
y

External Host 1

External Host 2

HDD

HDD

HDD

HDD

HDD

HDD

20

Example USE CASE Lustre -
Checkpoint Burst Buffer

SCRATCH

/mnt/SCRATCH

FILE A FILE B

NVM

e
HDD

NVM

eNVM

e

HDD

HDD

mirror0 mirror1

async

1

POOL: BB POOL: DEFAULT

2 3

1. Users can access to a unified global file system and

accelerate I/O using FLR layout

2. FileA is written data on a pool of NVMe devices

3. When the write is complete a mirror is created in the

HDD based pool. Mirror0 can be removed when the

job is completed.

4. FileB is using the default layout and is written into the

HDD based pool

4

21

22

23

24

25

26

Distributed Asynchronous Object Storage

Lightweight Storage Stack

Ultra-fine grained I/O

New Storage Model

Extreme Scale-out & Resilience

Multi-Tier

New Workflow Methodologies

Open source - APACHE 2.0 License

Storage Latency

Milliseconds Microseconds Nanoseconds

Traditional

Storage Stack

Granularity

fasterslower

X X X X X Block

Storage Latency

Milliseconds Microseconds Nanoseconds

Traditional

Storage Stack

Granularity

fasterslower

X X X X X Block

user/kernel context switch

+ communication software

+ filesystem & block I/O stack

Storage Latency

Milliseconds Microseconds Nanoseconds

Traditional

Storage Stack

Hard Drive

Granularity

X X X X X X X X Block

fasterslower

X X X X X Block

Storage Latency

Milliseconds Microseconds Nanoseconds

Traditional

Storage Stack

Hard Drive

NAND

Granularity

X X X X X X X X Block

X X X X X Block

fasterslower

X X X X X Block

Disruptive Technology

Milliseconds Microseconds Nanoseconds

Traditional

Storage Stack

Hard Drive

NAND

X X
3D XPointTM

NVDIMMs

Granularity

X X X X X X X X Block

X X X X X Block

Byte

fasterslower

X X X X X Block

Entirely masks HW capabilities!

Disruptive Technology

Milliseconds Microseconds Nanoseconds

Traditional

Storage Stack

Hard Drive

NAND

X X

Granularity

X X X X X X X X Block

X X X X X Block

Byte

fasterslower

X X X X X Block

Call for a new storage stack to deliver HW performance

Up to 1000x increase in data velocity!

3D XPointTM

NVDIMMs

Lightweight Storage Stack

End-to-end OS bypass

Mercury userspace function shipping

 MPI equivalent communications latency

 Built over libfabric

Applications link directly with DAOS lib

 Direct call, no context switch

 No locking, caching or data copy

Userspace DAOS server

 Mmap non-volatile memory (NVML)

 NVMe access through SPDK*

 User-level thread with Argobots**

HPC Application

DAOS library

DAOS Server

Mercury/libfabric

NVMe

NVRAM

Bulk transfers

* https://01.org/spdk ** https://github.com/pmodels/argobots/wiki

https://01.org/spdk
https://github.com/pmodels/argobots/wiki

Ultra-fine grained I/O
Mix of storage technologies

NVRAM (3D XPointTM NVDIMMs)

 DAOS metadata & application metadata

 Byte-granular application data

NVMe (NAND, 3D NAND, 3D XPointTM)

 Cheaper storage for bulk data

 Multi-KB

I/Os are logged & inserted into persistent index

All I/O operations tagged/indexed by version

Non-destructive write: log blob@version

Consistent read: blob@version

No alignment constraints

Index

ExtentsV
e
rs

io
n
 =

 e
p
o
c
h

Being written

Committed

NVRAM
NVMe

v1

v2

v3

read@v3

New Storage Model
Storage Pool

Reservation of distributed storage within a tier

Integration with resource manager

Container

Aggregate related datasets into manageable entity

Distributed across entire storage pool

Unit of snapshot/transaction

Object

• Collection of related arrays/values with
own distribution/resilience schema

• Key-value store with flexible multi-level key
– fine-grain control over colocation of related data

Record

• Arbitrary binary blob from single byte to several
Mbytes

Storage Pool Container Object Record

Extreme Scale-out & Resilience
Scalable communications

Track jobs and not individual nodes

Tree-based communication

Scalable I/O

Lockless, no read-modify-write

Ad hoc concurrency control mechanism

Shared-nothing distribution & redundancy
schema

Algorithmic & progressive layout

Replication/erasure code with declustered
placement

Storage system failure

• Failed target(s) evicted

• Automated online rebuild & rebalancing

End-to-end integrity

• Checksums can be provided by I/O
middleware

• Stored and verified on read & scrubbing

Application failure

• Scalable distributed transaction exported
to I/O middleware

• Automated recovery to roll back
uncommitted changes

Hash

(object.Dkey)

Hash (object.Dkey

Fault

domain

separation

DAOS Deployment

Data Model Library

Parallel Filesystem

Client

HPC Application

POSIX

HDD SSD

Kernel

User

Data Model Library

DAOS Client

HPC Application

DAOS API

NVMe

NVRAM

NEW

User

User

Parallel Filesystem

Server
DAOS Server

NVRAM

NEW

LibFabric Mercury Fabric RDMA

DAOS Ecosystem

DAOS
Apache 2.0 License

Application

HDF5 + Extensions
HPC

Legion
HPC

NetCDF
HPC

USD
Computer

animation

HDFS/

Spark
Analytics

CloudPOSIX
HPC

Data

Spaces
HPC

MPI-IO
HPC

…

Summary

Energy constrains our platform perf – top to bottom

Data movement consumes much of that energy

CiM saves energy and improves performance by optimizing & reducing data
movement

Upcoming memory transitions present a great opportunity to exploit CiM

Call-to-Action

 Choose key workloads in segments to drive definition

 Define ISA extensions & platform architecture

 Address multisocket/distributed memory challenges

 Implement performance libraries using CiM primitives

 Prototype platforms for implementation tradeoffs

Develop HW/SW deployment & enabling strategy

