Temperature evolution of the GDR width and Jacobi shape transitions in hot rotating ⁸⁸Mo nuclei

Michał Ciemała

10.06.2010

IFJ PAN, Kraków

Image: A math a math

Plan of speach

Jacobi shape transition GDR width

Jacobi shape transition is predicted as an abrupt change of an oblate shape at the so called critical value of spin.

LSD model calculations

Angular momentum evolution of the equilibrium shape of ⁸⁸Mo. Calculated GDR strength functions at different temperatures: b) integrated over whole spin distribution of the compound nucleus; c) for I=56, at the Jacobi regime; d) for I=64 - slightly above the fission limit.

Jacobi shape transition GDR width

O. Wieland et al.

Recent results from the GARFIELD + HECTOR experiment in Legnaro, for the A=130 mass region in temperature interval T=2-4 MeV. The change of the GDR width with angular momentum and temperature reflects the role played by quantal and thermal fluctuations in the damping of the giant vibrations.

Detectors Reactions

All of the measurements were performed at Legnaro National Laboratory, Italy.

Detectors were mounted in large vaccum chamber:

Michał Ciemała Jacobi shape in ⁸⁸Mo

Detectors Reactions

HECTOR array

PHOSWICH detectors 🛓 🛬

Michał Ciemała Ja

Jacobi shape in ⁸⁸Mo

Detectors Reactions

Used reactions

- ⁴⁸Ti beam + ⁴⁰Ca target \rightarrow ⁸⁸Mo at beam energy 300 MeV (temperature 3 MeV),
- ⁴⁸Ti beam + ⁴⁰Ca target \rightarrow ⁸⁸Mo at beam energy 450 MeV (temperature 3.8 MeV),
- ⁴⁸Ti beam + ⁴⁰Ca target \rightarrow ⁸⁸Mo at beam energy 600 MeV (temperature 4.5 MeV).

For all energies thin – 0.5 mg cm⁻² – ⁴⁰Ca target was used.

Removal of neutron energy deposits in BaF_2 crystals by ToF method.

・ロト ・日下 ・ 日下

< ∃⇒

Э

Selection of residues and light charged particles in PHOSWICH detector.

э

Selection of light chagred particle in GARFIELD array.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Spectrum of γ -rays measured by HECTOR array, gated by ToF and residues.

Procedure of analysing γ -rays data:

- Run CASCADE with defined GDR parameters,
- Divide experimental spectrum by simulated one,
- Multiply result by GDR spetrum which was used as input to CASCADE,
- Compare input GDR with GDR spectra,
- Modify input GDR parameters and return to point 1.

Monte Carlo CASCADE with Reissdorf density level parametrisation.

GDR spectra of ⁸⁸ Mo created in 300 MeV reaction (E*= 126 MeV) $^{*_{T1} + {}^{*0}Ca at 300 MeV}$

 $<\Gamma>=$ 11.5 MeV

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Э

CASCADE GDR spectra

GDR spectra for 300 MeV reaction, gated on alpha particles to choose higher spin of compound nucleus

⁴⁸Ti + ⁴⁰Ca at 300 MeV, gated by alpha

э

 $<\Gamma>=$ 12.5 MeV

CASCADE GDR spectra

Comparison of obtained GDR spectra for three different reaction energies

(日)、<日()、<</p>

э

- Obtained low energy (9MeV) GDR component can indicate existance of Jacobi shape transition in ⁸⁸Mo,
- We see increasing GDR width with increase of angular momentum, by gating γ-rays spectrum with alpha particles
- Also we observed change of GDR shape with changing the temperature of compound nucleus,

Possible continuation of investigation GDR width and Jacobi shapes in Mo nuclei (e.g. ⁹⁸Mo)

Reaction	
68 Ni + 30 Si \rightarrow 98 Mo	

Measure at SPIRAL2 by PARIS detector array.

A B + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

HECTOR and GARFIELD Collaboration:

- M. Kmiecik, A. Maj, M. Ciemala, K. Mazurek, P. Bednarczyk,
- W. Meczyński, S. Mylaski, J Styczeń, M. Ziebliński, M. Matejska-Minda,
- B. Fornal, VI. Kravchuk, F. Gramegna, M. Cinausero, V. Rizzi, M. Prete,
- M. Degerlier, G. Benzoni, N. Blasi, A. Bracco, S. Brambilla, F. Camera,
- F. Crespi, S. Leoni, B. Million, A. Corsi, O. Wieland, D. Montanari,
- R. Nicolini, G. Baiocco, M. Bruno, M. D'Agostino, T. Marchi, L. Moreli,
- G. Vannini, L. Bardelli, S. Barlini, G. Casini, M. Chiari, A. Nannini,
- S. Piantelli, G. Poggi, J.P. Wieleczko, I. Mazumdar, F. Azaiez,
- S. Franchoo, I. Stefan, D. Jenkins, O. Roberts, J. Dudek

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A