

Contribution ID: 6

Type: poster with financial aid

Possibility of production of new superheavy nuclei in complete fusion reactions

Using available experimental data, the survival probabilities of excited uperheavies are extracted. Their increase beyond Z=114 indicates the next proton shell closure at Z between 120 and 126.

The perspectives of the production of new superheavy nuclei ($Z \ge 114$) in complete fusion reactions were investigated. The possible way to synthesize new superheavies is the use of the actinide-based reactions with projectiles heavier than ⁴⁸Ca. At present, there are theoretical shell model calculations which predict a stability island close to the element Z=114 or 120, or 126 and N=184. Using these predictions of properties of superheavy nuclei

and the dinuclear system fusion model, the production cross sections in the hot fusion reactions 48 Ca, 50 Ti, 54 Cr, 58 Fe, 64 Ni+ 238 U, 244 Pu, 248 C were calculated. It was shown that the cross sections are much larger with mass tables which predict the next double magic nucleus AZ = 310 126 beyond 208 Pb. In this case there are possibilities to synthesize new superheavy elements with the present experimental setups.

The excitation functions of superheavy nuclei in hot fusion reactions $^{32,34,36,38}S + ^{233-238}U \rightarrow 108$ and $^{40,44,48}Ca + ^{238}U \rightarrow 112$, were predicted using the available predictions of nuclear properties.

Are you a student, postdoc or an attendee from an "emerging" country and would like to apply for financial support?

yes

Author: Dr SARGSYAN, Vazgen (JINR)

Presenter: Dr SARGSYAN, Vazgen (JINR)

Track Classification: Fusion reactions and synthesis of heavy and superheavy nuclei