

Observation of γ -delayed 3α -break-up in ¹²C

O. Tengblad for the MAGISOL collaboration Analysis & Transparencies by M. Alcorta

EURORIB 2010

6-11 June 2010 Village de Vacances de Lamoura

Outline

\circ Motivation

- Nuclear structure
 - Current status/models
 - Decay mechanism
- Experiment
 - CMAM/setup
- \circ Analysis
 - Branching ratios
 - Indirect detection of gamma-decay

Nuclear Structure & Astrophysics

N6. A State in C¹² Predicted from Astrophysical Evidence.* F. HOYLE, Cambridge University AND D. N. F. DUNBAR, W. A. WENZEL, AND W. WHALING, Kellogg Radiation Laboratory, California Institute of Technology.—It is

Phys. Rev. 92:1095 (1953)

Excited states: Theory

Excited states: Recent experiments

CONSERVENTIONES CIENTERICAS THE experiment: highly segmented

Beam: ³He @ 4.9 and 8.5 MeV from 5 MV Tandetron

Targets:

18.9 $\mu g/cm^2$ ^{10}B enriched (90%) on 4 $\mu g/cm^2$ C-backing

22.0 $\mu g/cm^2$ ^{11}B with 4 $\mu g/cm^2$ C-backing

Reactions: ${}^{10}B({}^{3}He,p)\alpha\alpha\alpha$

¹¹B(³He,d)ααα

 Ω = 38% of 4 π

Particle Identification

Identification of States in ¹²C

³He + ¹¹B \rightarrow d + ¹²C^{*} @ 8.5 MeV Q-value=10.46 MeV

³He + ¹⁰B \rightarrow p + ¹²C^{*} @ 4.9 MeV Q-value=19.69 MeV

•By selecting the proton or deuteron, we can calculate the ¹²C excitation spectrum

•We also detect the decay fragments of ^{12}C (3 α) to learn about the structure of the resonances in ^{12}C .

Indirect Detection of γ -decay

Excitation energy calculated from proton should be greater than that calculated form invariant mass of alphas

Indirect Detection of γ -decay

³He + ¹¹B \rightarrow d + ¹²C^{*} \rightarrow α+α+α

⁸Be 2⁺ contribution

⁸Be 0⁺ contribution

E ^{x 12} C (MeV)	Jπ	BR (%)	BR (%) (corr.)	$\Gamma_{\rm \alpha 0}$ (keV)
9.64	3⁻	96.3(1)	99.5(6)	32(2)
10.84	1-	94.7(5)	99.4(6)	249(2)
14.08	4+	22.8(2)	24.2(2)	50(11)
16.11	2+	5.6(1)	6.4(1)	0.3(1.0)

Only two energies are needed to describe a 3-body decay
Structures may arise from final state interactions or symmetries

C. Zemach, Phys Rev. **133** (1964) 1201 : Decay to 3π R.H. Dalitz, Philos. Mag. **44**, 1068 (1953).

¹²C Spectrum: Dalitz

Which is the J^{π} of the 13.35 MeV state?

3.5

1. A.A. Korsheninnikov, Sov. J. Nucl. Phys. 52, 827 (1990)- Democratic

- 2. R.Alvarez-Rodriguez et al., PRL 99 072503 (2007)- 3-body Cluster model
- 3. D.P Balamuth et al., PRC 10 975 (1974)- Sequential w/ interference

45

Summary: what have we learned

15.11	1+		15.11	1+	1. Observation of γ -decay and $lpha$ -decay
14.08	4+	Е,Г	14.08	4*	of T=1 15.11 MeV state
13.35	(2-)	Ε, Γ	13.35	4-	2. γ-decay of T=0 12.71 MeV state
12.71	1+		12.71	1+	 observed to Hoyle state and to the broad 10 MeV state
11.83	2-	Е,Г	11.83 11.1/11.2	2 ⁻	- 3. Improved measurements of energy
10.84	1-	E, Г, Э	10.84	1-	and widths for known states
≈10	(0,2+)				4. Branching ratios of decay through the
9.64	3-	Г	9.64	3-	 ⁸Be(gs) were measured for natural parity states
7.65	0+		7.65	0+	5. Studied the decay mechanism of the
		$\alpha + \alpha + \alpha$ -			12.71 MeV resonance using Dalitz plots
4.44	2+		4.44	2+	- 6. Dalitz plots used to determine J^{π} of
g.s.	0+		g.s.	0+	13.35 MeV resonance
¹² C			¹² C		O. Tengblad 20

Collaborators

• H.O.U. Fynbo, **O. Kirsebom**, S. Hyldegaard, K. Riisager Department of Physics and Astronomy, Århus University, Denmark

• M. Alcorta, M.J.G. Borge, M. Cubero, M. Madurga, A. Perea, O. Tengblad, Instituto Estructura de la Materia, CSIC, Madrid, Spain

• B. Jonson, T. Nilsson, G. Nyman Fundamental Physics, Chalmers Univ. of Technology, Göteborg, Sweden

• B. R. Fulton, C. Aa Diget University of York, United Kingdom.