Accelerator neutrino program in Japan

Masashi Yokoyama

Department of Physics, The University of Tokyo

2nd Workshop on Neutrino Near Detectors based on gas TPCs 20-21 March 2017, CERN

Long baseline neutrino experiments in Japan

Starting from K2K

(world's first LBL experiment, confirmed V osc.), leading the field for ~20 years!

Currently T2K is running, proposing extension T2K-II and seamless evolution to Hyper-K

Japan Proton Accelerator Research Complex

Proton delivery history

Operated with 470kW, still increasing towards >500kW Total POT exceeded 2×10²¹ (doubled in ~2 years)

Accumulating ~8×10¹⁸ POT/day

J-PARC power increase plan

- Reduce repetition cycle from 2.48sec to 1.3sec for >750kW
 (original design power of J-PARC) by 2019 cf. 470kW achieved with 2.48s cycle
 - Major investment: upgrade of power supply for magnet (ongoing)
- Then, gradual improvement to go 1.3MW+
 - Rep. cycle to 1.16s and ppp to 3.2×10^{14} (original design ppp)
 - Modest investment (RF PS, ..) and continuous effort (beam loss reduction, stability, ..)
- Technical feasibility is demonstrated. No show stopper.

Beam Power (kW)	425 (Achieved)	810	Demonstr ated	1326 (Goal for T2K-II)
$\#p/p(10^{12})$	220	220	270	320
#p/b(10 ¹²)	28	28	34	40
Rep T (s)	2.48	1.3	shots	1.16

J-PARC beam power outlook

 Highest priority in KEK Project Implementation Plan (for future budget request from KEK)

Strong commitment from lab!

v beamline for >MW

M.Friend(KEK), NEUTRINO2016

High Power J-PARC Secondary Beamline

J-PARC secondary beamline infrastructure (shielding, decay volume, hadron absorber) were all designed for 3–4 MW

Component	Limiting Factor	Current	Upgraded
		Acceptable Value	Acceptable Value
Target	Thermal Shock	$3.3 imes 10^{14}$ ppp	$3.3 imes 10^{14} \text{ ppp}$
	Cooling Capacity	0.75 MW	>1.5 MW
Horn	Conductor Cooling	2 MW	2 MW
	Stripline Cooling	0.54 MW	>1.25 MW
	Hydrogen Production	1 MW	>1 MW
	Operation	2.48 s & 250 kA	1 s & 320 kA
He Vessel	Thermal Stress	4 MW	4 MW
	Cooling Capacity	0.75 MW	>1.5 MW
Decay	Thermal Stress	4 MW	4 MW
Volume	Cooling Capacity	0.75 MW	>1.5 MW
Beam	Thermal Stress	3 MW	3 MW
Dump	Cooling Capacity	0.75 MW	>1.5 MW
Radiation	Radioactive Air Disposal	1 MW	>1 MW
	Radioactive Water	0.5 MW	$0.75{\rightarrow}1.3$ or 2 MW
			24 / 31

Target designed for 3.3×10¹⁴ppp, infrastructure for >3MW

→ no large R&D or construction necessary

Cooling/radiation handling facilities need upgrades

Current T2K results

- Providing exciting results!
 - leptonic CP, θ_{23} , and mass hierarchy..
 - Neutrino data ~doubled before summer 2017
- Great opportunities with measured θ_{13}
 - More physics with more data!

T2K Phase II (T2K-II)

- Original T2K program is 7.8×10²¹ POT
 - Will be achieved in the middle of power increase
- T2K-II extension proposal (arXiv:1609.04111)
 - Accumulate 2×10²²POT by ~2026 (start of HK)
 - 3σ CPV sensitivity for favorable parameters

T2K-II goals

- ~400 events expected for Ve appearance signal
 - Analysis improvement to increase statistical significance
 - Goal of systematics: 4% in total for number of Ve
 - ND measurement is a key!
- Stage-I status given by PAC recommendation.

Technical Design (including beamline) in 2017 to request

for Stage-2 approval.

Hyper-Kamiokande

Broad science program with Hyper-K

- Neutrino oscillation physics
 - Comprehensive study with beam and atmospheric neutrinos
- Search for nucleon decay
 - Possible discovery with ~×10 better sensitivity than Super-K
- Neutrino astrophysics
 - Precision measurements of solar v
 - High statistics measurements of SN burst V
 - Detection and study of relic SN neutrinos
- Geophysics (neutrinography of interior of the Earth)
- Maybe more (unexpected)

Extend highly successful program of Super-K

Expected events

1.3MW, 10×10^{7} sec, $v: \overline{v} = 1.3$

Ve candidates

Using fiTQun for π⁰ rejection

 δ =0 and 180° can be distinguished using shape information

CPV sensitivity

- Exclusion of $\sin \delta_{CP} = 0$
 - >8 σ (6 σ) for δ =-90°(-45°)
 - \sim 80% coverage of δ parameter space with >3

• From discovery to δ_{CP} measure

$\sin\delta=0$ eusíon		error	
>3σ	>5σ	δ=0°	δ=90°
78%	62%	7.2°	21°

Status of Hyper-K

- Proposal of the Hyper-K project is under review by several council, managements and committees in Japan.
 - Science Council of Japan "Master Plan" for large scale projects: selected as one of 28 priority projects (Feb.2017)
 - MEXT (funding agency) will make "Roadmap" in mid 2017 with SCJ report as one of input
- Working closely with labs and communities
 - KEK-PIP 1st priority: J-PARC upgrade for HK
 - ICRR future project committee formed to evaluate HK as the next main project of lab after KAGRA (GW telescope)
 - MoU of IPNS/KEK and ICRR/UTokyo for HK promotion, International Advisory Committee formed under Directors
- Budget request for detector construction in preparation.
 Discussion with University of Tokyo (host of Super-K) ongoing

Towards leptonic CP asymmetry

CPV significance for δ =-90°, normal hierarchy

Seamless program of Japan-based experiments

~ 3σ indication with T2K \rightarrow T2K-II,

>50 discovery and measurement with HK

Note: "exact" comparison sometimes difficult due to different assumptions

Summary

- Long baseline neutrino experiment is one of central pieces of Japanese HEP program
 - Planed upgrade of J-PARC to 1.3M+ propriety of KEK
 - Hyper-K is moving forward
- Seamless continuation of projects
 - T2K → T2K-II → HK
 - Investment in current program directly affects future
- With more statistics and precision, control of systematic uncertainties is a key for best physics output
 - Near Detectors will play crucial role..
 - → That's why we're here now!