Resistive MPGDs

Screen printed resistors versus DLC
Rui De Oliveira
workshop on the upgrade of T2K March 20-21

- MM Projects @ CERN and MPGD R&D
- Medium rates detectors
- High rate detectors
- Screen printed resistor Spark study
- conclusion

Resistive MPGD projects at CERN

·Production of MM	resistor family	
·ATLAS NSW	screen printed	
·CLAS 12	screen printed	
·Mcube	screen printed	
•Gbar	screen printed	
·LSBB	DLC .	
·BL4S	gap filling	
·STD detectors 10 x 10 1D	screen printed	
·STD detectors 10 × 10 2D	gap filling	
·R&D Micromegas		
·ATLAS resistive Kapton Micromegas Muon large pitch	resistive Kapton	
·ATLAS High rate screen printed Embedded resistors BULK	screen printed	
·High rate DLC Embedded BULK Micromegas detector	DLC	
·Embedded front end electronics in read-out boards	Screen printed	
·Micromegas pS resistif	Screen printed	
·Transparent Micromegas detectors	ITO	
·R&D other resistive structures		
·CMS FTM multiple resistive well detectors	DLC	
·CMS u-Rwell high rate Muon detectors	DLC	
·LHCB u-Rwell high rate Muon detectors	DLC	
·Low cost sticky Piggy back u-Rwell	DLC	

BULK or Standard?

"bulk" Micromegas

Mesh embedded in pillars

- Production in clean room is mandatory to avoid dust trapping
- We are now at CERN artificially Limiting the size to 550mm x 550mm active area for optimum yield
- Self supporting , limited dead zones
- Cylindrical detectors

"Standard" Micromegas

Mesh separated from pillars

- Need strong mechanical supports
- Planarity to be controlled! (to guarantee amplification gap constant)
- Large sizes (~ 2m) (ATLAS)
- easy to open and clean
- Lower cost for mass production

Medium rate detectors
 0 to 100khz/cm2

Resistor scheme in Micromegas detectors for medium rates

DLC

Screen printing

- Single source today
- DLC size limited now to 1.2m x 0.6m max
- No tooling
- less charging up due to inter-pads dielectric
- 1Mohms/square up to 1Gohms/square
- Clusters are equal in X/Y read-out

- Need tooling for screen printing
- Need alignment
- 1K ohms /square up to 100Kohms/square
- Different clusters in X/Y read-out
- Low cost in large volume
- Routine Screen printing up to $2m \times 0.5m$
- Many suppliers are existing

R11-rate performance

R11 -- Cu x-ray Peak vs Rate (560 V, 8 keV Cu x-ray, Ar:CO₂ 85:15)

u-Rwell for medium rate

Copper 5um / APICAL 50um / DLC

DLC

Glue

Read-out flex or board

u-Rwell medium rate

Vacuum Press gluing

u-Rwell medium rate

Top copper pattern + APICAL etch Detector ready

Flexible or rigid detector Radio pure materials possible thickness of 0.2mm possible

Max size today: 1.2m x 0.55m Real limit 1.6mx 0.55m Cheapest MPGD detector

Giovanni Bencivenni and all 2016

3/20/2017

High rate detectors
 From 100Khz to "100Mhz/cm2"

Embedded resistors are mandatory for High rate applications

- The embedded resistor evacuates locally the charges
- We can define the embedded resistor max spark power and its breakdown voltage by design

- -The thickness above the pad should be limited in both structures
- -Around 50 to 75um on the produced prototypes

Bare PCB

Coverlay gluing + via fill

Bare PCB

Coverlay gluing + via fill

Inner resistor printing

Coverlay gluing + via fill +top resistive layer print

Ready for BULK process

MM with embedded resistors: High rate

Shapes and values
Mr Chefdeville R1 Detectors for the LAPP

- Quick rise of the resistive pads' potential
- Limitation of the discharge amplitude
- Compatible with a pixelized readout

Strip 0.1mm x 100mm

Design by Rui de Oliveira et al.

More than 1kv breakdown Voltage (2 Kohms)

L_{eff} ~ 0.13 cm R(100 k/sq) ~ 400 kOhm R(1 k/sq) ~ 4 kOhm

L_{eff} ~ 1.3 cm R(100 k/sq) ~ 4 Mohm R(1 k/sq) ~ 40 kOhm

L ~ 13 cm R (100 k/sq) ~ 40 MOhm R (1 k/sq) ~ 400 kOhm

Real values: 40 to 60 KOhms with $10K\Omega/Sq$ 400 to 750 KOhms With $100K\Omega/Sq$

Real values: 400 KOhms with 10KΩ/Sq 4 MOhms With 100Ω/Sq

Real values: 4 MOhms with $10K\Omega/Sq$ 40 MOhms With $100\Omega/Sq$

1 mm long resistor

Rate capability

Here: linearity deviations less than 1 % at G = 4200, for 8 keV Xrays & 1 MHz/mm2 Can be extrapolated to other running conditions (better for MIPs, worse for showers) Anyway, 1 MHz/mm2 remains impressive.

Response curves (current I VS rate f) are described by : $I(f) \sim Q_0 \cdot f / (1+B.R.Q_0 \cdot f)$ [B] = 1/V, slope of gain curve ; $Q_0 = q_e \cdot N_o \cdot G_0$, primary charge * G(dV=0)

→ (G₀,R) are fitted to the data.
Useful for characterisation.

Max Chefdeville and all Lapp dec 2015

5um copper/50um APICAL/DLC

DLC1

Base material , DLC (100 Mohms/square)

Glue DLC2 (100M) layer (pre drilled) on DLC1(100M)
via filling with silver paste (yellow)
Screen printed resistors above 10K/square are not behaving correctly
in this multilayer configuration

Glue a flex read-out circuit (Strip or pad) pre drilled (green) on DLC2 via filling with silver paste (yellow)

Top layer patterning APICAL etching

• MM Resistive BULK with DLC?

Medium rates Single layer protection Screen printed or DLC

High rates
Digital read-out
2 layers screen printed

Analog read-out
2 layers DLC (R&D in progress)

Screen printing Vs DLC

Screen printing

- 10K to 100 K/square
- need a pattern
- X/Y clusters are different
- Medium cost
- no sharing
- Energy resolution
 - Similar to metallic MM
- Spark energy
 - 10³ reduction / metallic MM

DLC

- 1M to 1G/square
- No pattern
- X/Y similar cluster
- Cheaper in low volumes
- Controlled sharing
- Energy resolution
 - Better than metallic MM (TBC)
- Spark energy
 - More than 10³ reduction

Screen printed resistor Spark study

SEM observation resistive strips after Spark discharge

Masahiro Yamatani, Tatsuya Masubuchi ICEPP, University of Tokyo

ICEPP
The University of Tokyo

.....

- * Keithley for voltage adding (300,500,800 V)
- * 2 probes connected to Resistive strips
 - → One is attached on HV line side
 - → Other one is on the strips (floating for spark)
- * Optional current limit (10uA, 100uA, ...)

* Checked resistivity/strip vs surface status by SEM

Point : 5 Voltage : 300 V Resistance : 4.41 M Ω Current limit : 10 μA

Point : 8 Voltage : 300 V Resistance : 4.41 M Ω Current limit : 10 μA

Point : 2 Voltage : 900 V Resistance : 4.41 M Ω Current limit : 10 μA

Table 5 – 3D profile of the spark discharge crater.

Point : 4 Voltage : 500 V Resistance : 1.3 M Ω Current limit : 10 μA

Table 7 - 3D profile of the spark discharge crater.

Point : 9 Voltage : 900 V Resistance : 0.9 M Ω Current limit : 100 μ A

Table 13 – 3D profile of the spark discharge crater.

Point : 12 Voltage : 500 V Resistance : 1.2 M Ω Current limit : 100 μA

Table 20 – 3D profile of the spark discharge crater.

Conclusion

Bulk technology

- -600mm \times 600mm \rightarrow metal or single resistive
- -10cm x 10cm → double resistive high rate <u>STD Micromegas</u>
- $-2m \times 500mm \rightarrow metal or single resistive u-Rwell$
 - $-1.3m \times 0.5m \rightarrow single resistive$
 - -10cm \times 10cm \rightarrow double resistive high rate