DE LA RECHERCHE À L'INDUSTRIE

READOUT ELECTRONICS FOR T2K-II TPCS:

SETTING UP A WORKPLAN

D. Calvet,

Irfu, CEA Saclay, 91191 Gif sur Yvette Cedex, FRANCE

HYPOTHESIS ON TPCS TO BE BUILT

- 2 TPCs, each composed of 2 end-plates supporting 10 Micromegas modules segmented in 32 x 32 pads
- Total of 40 detector modules; 40K-channels (40.960)

T2K-II TPC READOUT ELECTRONICS BLOCKS

Front-end ASIC (design), production, test

Front-End Card design, production, test

Front-End Mezz. design, production, test

Front-End Mezz. firmware

Front-end ASIC Prod. test-bench

Front-end card Prod. test-bench

Front-end mezz. Prod. test-bench

on-detector off-detector

Back-end Board design, production, test

Embedded Firmware & Software

DAQ hardware & software Power supplies Cabling, ...

Mechanics, Cooling Detector test & calib.
Test-bench

Services and specific functions

Project structure

- Various building blocks; mostly electronic hardware and software, but also mechanical components
- Interface to detector, cooling, system, etc.

BUILDING BLOCK N°1: FRONT-END ASIC

Quantity required for 40K ch. including 10% spares: 704 Estimated cost: 0€ to 65 k€

AFTER

- Designed and used in T2K. Current stock of tested and encapsulated chips: ~780 (53K-channel)
- Can produce more wafers, but package obsolete no solution found for encapsulation so far.
- Pros: low risk, ready now, no manpower, no cost up to ~40K-ch. Cons: limited stock, end of life product

AGET

- Also a proven chip. Current stock too low. Same problem of package obsolescence as AFTER
- Pros: fresher design than AFTER. Cons: 64 channels rather than 72; no stock; package issue

DREAM

- Also a proven chip but not directly compatible with AFTER-AGET
- Pros: smaller size, packaging OK. Cons: 64 channels, need new production, less re-use from existing

ASTRE

- Space grade version of AGET, also supports longer peaking time (up to 8 μs)
- Pros: most versatile chip. Cons: features not needed in T2K. Package issue. Cost of masks for mass prod.

BUILDING BLOCK N°1: ASIC (CON'T)

New chip designed at Irfu

- Ideas of improvements: include the ADC on-board (seems too much work)
- Improve the characteristics under saturation: limit influence on adjacent channels (in discussion) (but is resistive Micromegas less prone to make the kind of saturations seen on present TPCs?)

Other chip (either existing or planned)

Suggestions?

Proposed strategy

- Irfu could take responsibility of this building block
- Study the possibility to make improvements on one of our existing chips
- Consider the use of AFTER/AGET/ASTRE/DREAM as it is
- Minimal scheme: AFTER from the existing stock (if it sufficient)
 - → Final choice on the ASIC can probably be delayed to ~end 2018

BUILDING BLOCK N°2: FRONT-END CARD

288ii-channel FEC (AFTER) built in 2010 for ILC-TPC R&D

256ⁱ(288ⁱⁱ) -channel FEC

Quantity required for 40K ch. including 10% spares: 176 assuming 4 ASIC's per card 88 assuming 8 ASIC's per card Estimated cost: 88*400=35 k€

384ⁱ(432ⁱⁱ)-channel FEC

i: with 64-channel ASICs

ii: with 72-channel ASICs

Design principles

- Minimal complexity no protection circuits (resistive MM), no local FPGA, may be not even ADC (multiplexed analog out), only ASICs (packaged...), connectors, simple clock/control fan in/out, power
- If card small enough could be mounted parallel to detector, otherwise perpendicular (like current TPCs)

BUILDING BLOCK N°2: FRONT-END CARD (CON'T)

Proposed strategy

- Discuss and agree connector interface to detector
- Discuss and agree interface to front-end Mezzanine card (see next building block) independent of ASIC,
 or capable of supporting several types (within the possible candidate chips)
- First prototyping can use existing chips until final device is chosen

Work package outline

- Front-end card design, prototyping and validation
- Build easy-to-use test bench for card production
- Mass production and test
- Installation and commissioning
 - → Possible interest of Lpnhe group for taking responsibility of this building block. Other candidates?

BUILDING BLOCK N°3: FRONT-END MEZZANINE CARD

Quantity required for 40K ch. including 10% spares: 44
Estimated cost: 44*600=27 k€

Design principles

- ADCs (if not on FECs) + local intelligence in FPGA + additional components; single fiber optical readout to back-end electronics for clocking, trigger, configuration, data and slow control
- Embedded firmware only, probably no need for embedded processor

BUILDING BLOCK N°3: FRONT-END MEZZANINE CARD (CON'T)

Proposed strategy

- Partial re-use (FPGA firmware, part of schematics, knowledge) and adaptation of the "Generic Read-Out Card – GROC) in development at Irfu for the Harpo project
- Main tasks: drop the front-end side; rework logic (bigger FPGA) and firmware to drive 16 ASICs instead of 4, re-layout PCB

Commercial FPGA module Enclustra Mars MX3 (Xilinx Artix 7 FPGA)

6U form factor 256-channel generic readout card (supports AFTER, AGET and ASTRE)

ASTRE chip

Work package outline

- Front-end Mezzanine card design, prototyping and validation
- Develop embedded firmware
- Build easy-to-use test bench for card production
- Mass production and test
- Installation and commissioning
 - → Interest of Irfu for board design, firmware and production. Interest of Warsaw group for design of production test bench and board production

BUILDING BLOCK N°4: BACK-END ELECTRONICS

Design principles

- Carrier card + System-On-Module (preferably commercial) + sufficient number of optical transceiver + Gigabit Ethernet interface to local control and DAQ PC + I/O's for clock and trigger
- FPGA firmware and on-board processor with embedded software bare metal or Linux

BUILDING BLOCK N°4: BACK-END ELECTRONICS (CON'T)

Strategy

- Direct hardware re-use and large part of firmware/software re-use of the "Trigger & Data Concentrator Module - TDCM" under development at Irfu for PandaX-III experiment
- The TDCM supports the control and readout of up to 32 front-ends (e.g. G-ROC)

6U form factor custom carrier, (layout in progress)

Commercial System-On-Module Mercury ZX1 (Xilinx Zynq 7045)

PANDAX

PARTICLE AND ASTROPHYSICAL DEMON THE

Work package outline

- Back-end board design, prototyping and validation
- Embedded firmware; embedded software
- Test bench not needed due to small production volume (manual testing)
- Production, validation with other building blocks
- On-site installation and commissioning

→ Interest of Irfu for board design, firmware, embedded software, board production, etc.

16-optical ports Mezzanine card

BUILDING BLOCK N°5: TPC BACK-END PC AND SOFTWARE

Quantity required: 1 + 1 spare Estimated cost: 8k€

Proposed strategy and work package outline

- Entirely based on commercial hardware
- Develop on-line software to bridge new TPC readout system to current MIDAS based DAQ

→ open to contributors

BUILDING BLOCK N°6: SERVICES

Power supplies

- LV for front-end electronics; LV for back-end electronics
- Cables and optical fibers
 - → Shared between groups responsible of front-end and back-end electronics

Mechanics and cooling

- Support plates for front-end electronics, provides mechanical support, protection, shielding & cooling
- Water cooling system needed for front-end; ventilated crate for back-end
 - → Separate tasks from the electronics itself (but close interaction)

 Open to collaborators potential interest of Irfu not yet discussed internally

BUILDING BLOCK N°7: DETECTOR PRODUCTION TEST BENCH

Purpose & tools

- Test all the detectors of the new TPC
- Robot arm to move radioactive source and scan detector
- Gas box, HV, LV, readout electronics for 1module and small DAQ cooperating with robot arm

Test bench for production of detectors T2K phase 1 (IFAE/CERN/IRFU)

Proposed strategy

- Probably difficult to re-use or adapt system used 10 years ago (obsolete, dismantled?)
- Mostly new system; need not wait until final electronics of T2K-II is made (e.g. use GROCs + TDCM?)
 - → Interest of Warsaw group to take responsibility for this system

GUIDANCE FOR CHOICE OF DETECTOR SEGMENTATION MATCHED TO ELECTRONICS

MM Module	24 × 32 or	27 × 32 or	32 × 32	32 × 36 or
Segmentation	32 × 24	32 × 27		36 × 32
Pad count per MM Module	768	864	1024	1152
ASIC count per	6 (3)	6 (3)	8 (4)	8 (4)
FEC	× 64-channel	× 72-channel	× 64-channel	× 72-channel
FEC count per MM module	2 (4)			

Parameters not constrained by electronics

- Number of TPCs to build: choice between 1, 2, 3 or 4
- Number of detector modules per TPC end-plate: up to 16 (assuming 1 BE board per TPC)
- Detector module size: recommended size between 20 cm × 20 cm up to 50 cm × 50 cm
- Not forced to keep a 1:1 correspondence between a MM detector and a FEM + FEC block e.g. if 1 m × 40 cm MM modules are built, these could be read out by 2 blocks of 1 FEM + FECs.

SUMMARY AND NEXT STEPS

Present

- Proposed a tentative list of building blocks and responsible groups
- No firm commitment (at least from Irfu) until proposed tasks are discussed internally, funding and manpower are identified
- Still several building blocks available to new contributors

Future

- Possible goal for 2017: define precisely the new TPCs (size and segmentation), build the first prototype Micromegas detector and start testing it
- In 2018-2019: electronic board prototyping and validation
- 2020: production; 2021: installation & commissioning