# Target Detector Status & Plans

Masashi Yokoyama Department of Physics, University of Tokyo

### Objectives of target detector(s)

- Provide target mass for neutrino interaction
  - Especially important for Ve measurement
  - Water target necessary or not?
- Acceptance for large angle tracks
- Reconstruct tracks inside detector
- Background reduction/control for Ve measurement

Need to be quantitively defined in terms of physics requirements, with consideration of the detector design

# Current FGD

- 0.96×0.96cm<sup>2</sup>, planar geometry
  - Scintillator produced in TRIUMF based on Fermilab recipe







# Reference design (based on WAGASCI structure)



#### 3-mm thick plastic scintillator Grid + x/z layers

Two modules: water-in and empty.



#### Benjamin Quilain



Figure 31: Reconstruction efficiency for muons, pions and protons.

#### From Task Force Report

### Other possibilities..?



#### Some ideas from Davide





More ideas exist

#### Electron neutrino measurement Fractional error on the number of expected events at SK

- Ve cross section uncertainty will be important for CP measurement in T2K-II era
- Need to consider how to suppress/control γ background
  - Current level sufficient?
  - Finer granularity helps? other idea?

|                                                                                         | $ u_{\mu} \text{ sample} $ 1R <sub>µ</sub> FHC | $v_{e}$ sample 1R <sub>e</sub> FHC | $\overline{ u}_{\mu}$ sample 1R <sub>µ</sub> RHC | $\overline{\nu}_{e}$ sample 1R <sub>e</sub> RHC | 1R <sub>e</sub><br>FHC/RHC |
|-----------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------|--------------------------------------------------|-------------------------------------------------|----------------------------|
| $\nu$ flux+cross-section constrained by ND280                                           | 2,8%                                           | 2,9%                               | 3,3%                                             | 3,2%                                            | 2,2%                       |
| $ u_{\rm e}/ u_{\mu} $ and $ \overline{ u}_{\rm e}/\overline{ u}_{\mu} $ cross-sections | 0,0%                                           | 2,7%                               | 0,0%                                             | 1,5%                                            | 3,1%                       |
| ΝC γ                                                                                    | 0,0%                                           | 1,4%                               | 0,0%                                             | 3,0%                                            | 1,5%                       |
| NC other                                                                                | 0,8%                                           | 0,2%                               | 0,8%                                             | 0,3%                                            | 0,2%                       |
| Final or secondary hadron int.                                                          | 1,5%                                           | 2,5%                               | 2,1%                                             | 2,5%                                            | 3,6%                       |
| Super-K detector                                                                        | 3,9%                                           | 2,4%                               | 3,3%                                             | 3,1%                                            | 1,6%                       |
| Total                                                                                   | 5,0%                                           | 5,4%                               | 5,2%                                             | 6,2%                                            | 5,8%                       |



ies

# Low energy hadrons

- Efficiency study by Benjamin
- Low energy proton measurement (energy, direction) is difficult (resolution)
  - Maybe possible with much finer granularity?
  - Quantitative requirement?
- How important is Michel electron tagging?
  - Requirements for electronics (dead time, ..)

# Sub-WorkPackages (preliminary)

- Definition of detector configuration [with simulation/physics]
  - Water target necessary? (alternative configuration?)
  - WAGASCI-like? FGD-like? Else?
- Plastic scintillator
- WLS fibers
- Photosensors (MPPC)
- Mechanical structure [with WPI]
- Water system (if necessary)
- Electronics (frontend, backend)
  - Independent system or identical to HTPC (like FGD-TPC)?
  - Interface to other system (DAQ, hardware)
- Monitoring system

### Scintillators

- Lots of experience with Fermilab extrusion facility
  - Produced scintillators for MINOS/SciBar/INGRID/P0D/ ECAL/WAGASCI
  - May need to produce/test new die
  - Availability of facility for mass production to be checked
- Other suppliers?



### Scintillator performance

Light yield measurement with WAGASCI scintillator (2014)



### MPPC (Multi-Pixel Photon Counter)

- Semiconductor photosensor ("SiPM") by Hamamatsu
  - Compact, high photon detection efficiency, immunity to B-field
- T2K near detectors were first large scale application
  - >50,000 devices used
  - Excellently working since 2009







### MPPC development

- Recent version has significantly improved performance compared to those used in T2K
- Will (re-)start communication with Hamamatsu about possible further development, including package



# Preliminary Timeline

- 2017
  - Fix design
  - R&D and test of components
    - Scintillator, MPPC, electronics, mechanical component
- 2018
  - Test production of scintillator.
  - Beam test with small prototype?
  - Start mass production/procurement (fiber, MPPPC)
- 2019
  - Mass production, testing
- 2020
  - Construction of detectors

# Groups currently interested

- Japan
  - Japanese universities
  - KEK
    - Postdoc opening for ND upgrade! (Deadline:Apr/17) <u>http://www.kek.jp/en/Jobs/e\_researcher\_T2Kexperiment.pdf</u>
  - Got grant for T2K upgrade, acc.+beam+ND (-2020)
    - Postdocs+test/prototype/construction
  - Little engineering resource in Japanese institutes
- LLR (France)?
  - Mechanical engineering? electronics??
- More groups are necessary! your contribution is welcome