S.BORDONI, F. SANCHEZ

TEST BEAM MEASUREMENTS

AIM OF THE WP

- Understand and define the test beam requirements and needs for the different WPs
- ▶ Identify the most appropriate facility/ies to accommodate the requirements (CERN?) and define the time scale for the tests
- Coordinate with the facility and optimise run time and requests

TEST BEAM PRELIMINARY REQUIREMENTS

- Detector performances and characterisation
- Physics measurements

In the following slide there is a preliminary and incomplete list focused on "final TPC design"

Intermediate tests might be needed (TOF, target, ..). This workshop is the opportunity to start thinking and compile a list

TPC PERFORMANCES AND CHARACTERISATION (1)

- ▶ Point resolution as function of the track angle.
 - Muons of relatively large energy.
 - Is it possible to rotate the TPC?
- dE/dx resolution and absolute calibration
 - Muons of different energies to scan the relativistic raise.
 - Required good external momentum definition.
- Electron dE/dx to understand mismatch Data-Geant 4
 - Electrons with several energies.

TPC PERFORMANCES AND CHARACTERISATION (2)

- Proton dE/dx
 - Low energy protons.
- Low energy protons to understand dynamic range and hairy tracks.
 - Can this be done with alphas or other heavy nuclei?
- Global PiD
 - Combined run with ToF and TPC.

Yevgeniy's "chainsaw" events

- ▶ Hairy Pip from Pip's data events
- Same features as other Hairy Pips: Delayed timing, high and low charge events, ...
- Weird loops not contained into 1 ASIC

PHYSICS MEASUREMENTS

- Proton range for low energy protons (<20 MeV kinetic Energy).</p>
- ▶ Pion scattering cross-sections: Elastic, Inelastic, Charge exchange, etc...
 - Range from 100 to 700 MeV/c positive and negative charged pions.
 - Required mainly in C and water (Argon?). It requires external target.
- Proton scattering cross-sections
 - Range from 100 to 700 MeV/c protons.
 - Required mainly in C and water (Argon?). It requires external target.

SOME QUESTIONS

- Can we explore different detector angles? This is even more important for the horizontal TPC's looking into high angle tracks.
- Do we want to include tests with TOF or Target?
- Do we need a magnet ? For which tests?

CONCLUSIONS

- We need to start to define the list of tests we would like to perform
- Requirements and time-scale will set the constraints on the facility
- ▶ Collect interests from Institute to this WP to start to share the work

SUPPLEMENTARY

Status of Pip's gas interaction analysis

- $\begin{tabular}{ll} \hline & \textbf{Hairy tracks spotted by Pip in his TPC gas interactions} \\ & \Longrightarrow \textbf{Hairy Pips } \hline \textbf{C} \\ \end{tabular}$
- ► These create very difficult tracks for TREx
- ► This could also impact significantly the PID!

Hairy Pip example 1

- ▶ Hairy Pip from Lukas proton control sample
- Even if not too bad in YZ projection, big time delay for low charge hits
- Also TREx doesn't pick up all the hits

Hairy Pip waveforms

- From neighboring pads in the previous event
- ► These waveforms are typical to the Hairy Pips
- High charge generally saturated waveform with a bit of negative before and/or after
- Low charge with negative part before
- Also sometimes ringing on high charge waveforms (after 12000 on this example)

Anthony Hillairet, University of Victoria, Canada
Hairy Pips, One significant issue
4/9
Anthony Hillairet, University of Victoria, Canada
Hairy Pips, One significant issue
6