Timing of long scintillator counters with WLS fiber readout for TOF system

O. Mineev, Yu. Kudenko
INR RAS, Moscow, Russia

Objectives

Primary goal for TOF system: separation of charged particles and directions by time-of-flight in the inner volume of the electromagnetic calorimeter. Outer TOF layer must cover about $82 \mathrm{~m}^{2}$ area (to the maximum) and provide time resolution σ_{t} close to 0.5 ns .

Fixed parameters for the conceptual design of counters with WLS fiber readout:

1. 3 m long Y11 Kuraray WLS fibers

The best available WLS fibers to obtain the highest light yield which compensates the slow decay time of re-emitting.
2. 7 mm thick extruded scintillator bars.

The established technology in manufacturing of extruded scintillators, proved by time and achieved light yield. Reduced scintillating light fluctuations over scintillator volume.
3. 5 cm spacing between the fibers.

This distance looks like the optimum between the performance and cost of the detector (our feeling based on many tests).

Then we have to investigate the configuration of detectors which could provide the required performance

Tested samples of 5 - and $10-\mathrm{cm}$ width

A few scintillator samples were made from 7-mm thick extruded slabs, with a single groove and two grooves spaced at 5 cm .
4 small samples: $0.7 \times 5 \times 15 \mathrm{~cm}^{3}, 1$ fiber glued in. 2 wide samples: $0.7 \times 10 \times 15 \mathrm{~cm}^{3}, 2$ fibers glued in. Reflector: chemical one plus Tyvek paper.

WLS fibers: 3 m long Y11 Kuraray multi-clad, 1 mm diameter.

Tested samples of 15 - and $20-\mathrm{cm}$ width

Two slabs were manufactured: $0.7 \times 15 \times 120$ and $0.7 \times 20 \times 120 \mathrm{~cm}^{3}$ with 3 and 4 grooves. WLS Y11 fibers of 3 m length were glued in. Readout was implemented with $3 \times 3 \mathrm{~mm}^{2}$ MPPCs, a single MPPC at one scintillator end.

Readout and trigger for cosmic tests

The signal charge: area of signal waveform normalized to photoelectrons The signal timing: constant fraction (0.1) of a signal front

Digitized signal waveforms

Typical digitized waveforms of a cosmic signal from two sides of a tested counter.

Full scale: 1024 samples, 200 ps between samples.

Specification of tested Hamamatsu MPPCs

Tested photodiodes are of the same generation and similar parameters, the differences are the total sensitive area size and pixel size

S12572-050C
Sensitive area size :
Number of pixels :
Pixel size:
Gain :
Operating voltage:
Peak spectral sensitivity: 450 nm
Dark count (typical): 1000 kHz
Crosstalk: ~ 25 \%
PDE at 500 nm :
1.25×10^{6}
~ 67.6 V
$3 \times 3 \mathrm{~mm}^{2}$
3600
$50 \times 50 \mu \mathrm{~m}^{2}$
~35 \%

S12571-025C
$1 \times 1 \mathrm{~mm}^{2}$
1600
$25 \times 25 \mu \mathrm{~m}^{2}$
5.15×10^{5}
$\sim 68.5 \mathrm{~V}$
450 nm
100 kHz
~ 22 \%
~35 \%

$3 \times 3 \mathrm{~mm}^{2}$ MPPC, $5-\mathrm{cm}$ wide counters, 1 layer

| Viewed | | | |
| :---: | :---: | :---: | :---: | :---: |
| Light yield, | | | |
| ph.e./MIP | Timing
 ns | Number
 of layers | |
| 1U | 80 | 0.85 | 1 |

$3 \times 3 \mathrm{~mm}^{2}$ MPPC, $5-\mathrm{cm}$ wide counters, 2 layers

$3 \times 3 \mathrm{~mm}^{2}$ MPPC, $10-\mathrm{cm}$ wide counters

Switch to using 1 mm MPPCs

The optical connectors for 1 mm MPPCs were glued on fibers in the same tested counters.

The measurements were repeated with MPPCs connected in parallel.

$1 \times 1 \mathrm{~mm}^{2}$ MPPC, $10-\mathrm{cm}$ wide counters, parallel connection of MPPCs

Spectra for parallel connection of 4 MPPCs

Time resolution 0.60 ns for $\left(\mathrm{T}_{\text {left }}-\mathrm{T}_{\text {right }}\right) / 2$

$3 \times 3 \mathrm{~mm}^{2}$ MPPC vs $1 \times 1 \mathrm{~mm}^{2}$ MPPC

$3 \times 3 \mathrm{~mm}^{2}$ MPPC provide slightly better light yield over $1 \times 1 \mathrm{~mm}^{2}$ MPPC because of higher PDE (larger pixel size).

The time resolution is almost the same in both cases, the readout by $3 \times 3 \mathrm{~mm}^{2}$ MPPC or $1 \times 1 \mathrm{~mm}^{2}$ MPPCs connected in parallel.

> Conclusion: no difference if merge WLS fibers light on a single large MPPC or sum pulses from small MPPCs in parallel.

Time resolution vs number of layers

Measurements were done to study how the timing depends on the number of scintillator layers.

1x1 mm² MPPC, 4 counters, individual readout

Configuration:

All fibers at each end are coupled to an individual $1 \times 1 \mathrm{~mm}$ MPPC. Each MPPC is amplified and digitized.

Viewed counters	Light yield, ph.e./MIP	Timing σ, $n s$	Number of layers
1U	48	0.99	1
2U	64	0.86	1
1D	57	0.87	1
2D	64	0.85	1
1D+2D	122	0.62	2
All 4 layers	233	0.48	4

1x1 mm² MPPC in parallel, 4 counters

 for combination $\left(T_{L}-T_{R}\right) / 2$.

Configuration:

All fibers at each end are coupled to an individual $1 \times 1 \mathrm{~mm}$ MPPC. All MPPCs at each side are connected in parallel.

Viewed counters	Light yield, ph.e./MIP	Timing σ, ns	Number of layers
2D+2U	126	0.60	2
1D+2D	130	0.57	2
1D+2D+2U	180	0.50	3
All 4 layers	220	0.45	4

$3 \times 3 \mathrm{~mm}^{2}$ MPPC, 4 counters

3 m long fibers. Timing is calculated for combination $\left(T_{L}-T_{R}\right) / 2$.

Configuration:

All fiber ends at each side are coupled to a single $3 \times 3 \mathrm{~mm}$ MPPC.

Viewed counters	Light yield, ph.e./MIP	Timing σ, $n s$	Number of layers
1U+2U	164	0.63	2
1D+2D	171	0.63	2
1D+2D+2U	239	0.53	3
All 4 layers	334	0.46	4

Time resolution vs number of layers

Conclusion: 7-mm thick 3-m long scintillators and Y11 WLS fibers spaced at 5 cm provide the time resolution:
$\sigma=800-870 \mathrm{ps}$ with a single layer $\sigma=600-630 \mathrm{ps}$ with two layers $\sigma=500-530 \mathrm{ps}$ with three layers $\sigma=450$ ps with four layers

Parameters vs scintillator width

All fibers were read out by $3 \times 3 \mathrm{~mm}^{2}$ MPPCs, a single MPPC at one end. WLS fibers: $3-\mathrm{m}$ long Kuraray Y11 of 1 mm diameter.
Fiber spacing: 5 cm .
Scintillator thickness: 0.7 mm . Number of layers: 1.

Width	Number of fibers	Timing σ, ns	Light yield, ph.e./MIP
5 cm	1	0.85	80.0
10 cm	2	0.80	88.3
15 cm	3	0.87	78.6
20 cm	4	0.86	78.1

Spectra for the $20-\mathrm{cm}$ wide slab

A single scintillator slab of $0.7 \times 20 \times 120 \mathrm{~cm}^{3}$ size with 4 WLS 3-m long fibers. Cosmic muons spectra were obtained over the center line across the slab.

Light yield at both ends:
39.5 and 38.6 p.e./MIP

Timing spectrum $\left(\mathrm{T}_{\text {LEFT }}-\mathrm{T}_{\text {RIGHT }}\right) / 2$
Resolution: $\sigma_{T}=0.86 \mathrm{~ns}$

Proposed TOF counter conception

The TOF counter consists of two scintillator slabs of $0.7 \times 20 \times 270 \mathrm{~cm}^{3}$ size.
Four WLS Kuraray Y11 fibers of 1 mm diameter are glued in the slab.
8 WLS fibers are bundled within a scintillator slab at each side of the counter into a connector. Connector is mounted directly at the scintillator.

The fibers are read out by a single $3 \times 3 \mathrm{~mm}^{2}$ MPPC at each side.
Expected time resolution σ is $630-650$ ps.

Number of TOF channels for the outer level

TOF outer layers are mounted at the inner surface of e-m. calorimeter. Simplified picture combines both inner barrel and POD parts of e.-m. calorimeter, total size is about $2.6 \times 2.8 \times 6.3 \mathrm{~m}^{3}$.

Estimation to the max coverage:

Length of sci. slabs: 260-270 cm
Width of sci. slabs: 20 cm
Two slabs per a TOF counter, both side readout.

Number of TOF counters: 152
Number of readout ch. : 304
Number of sci. slabs : 304
Total sci. weight: $\sim 1300 \mathrm{~kg}$ Number of 3×3 mm ${ }^{2}$ MPPCs : 304
WLS fiber length: 3.6 km

Number of channels in TOF inner layer around the active target is more difficult to estimate and depends on the configuration of the active target and TOF counters.

