Timing of long scintillator counters with WLS fiber readout for TOF system

O. Mineev, Yu. Kudenko INR RAS, Moscow, Russia

2nd Workshop on Neutrino Near Detectors based on gas TPCs 20-21 March 2017 CERN

Objectives

Primary goal for TOF system: separation of charged particles and directions by time-of-flight in the inner volume of the electromagnetic calorimeter. Outer TOF layer must cover about 82 m² area (to the maximum) and provide time resolution σ_{t} close to 0.5 ns.

Fixed parameters for the conceptual design of counters with WLS fiber readout:

1. 3 m long Y11 Kuraray WLS fibers

The best available WLS fibers to obtain the highest light yield which compensates the slow decay time of re-emitting.

2. 7 mm thick extruded scintillator bars.

The established technology in manufacturing of extruded scintillators, proved by time and achieved light yield. Reduced scintillating light fluctuations over scintillator volume.

3. 5 cm spacing between the fibers.

This distance looks like the optimum between the performance and cost of the detector (*our feeling based on many tests*).

Then we have to investigate the configuration of detectors which could provide the required performance

Tested samples of 5- and 10-cm width

A few scintillator samples were made from 7-mm thick extruded slabs, with a single groove and two grooves spaced at 5 cm.

4 small samples: **0.7 x 5 x 15 cm³**, 1 fiber glued in. 2 wide samples: **0.7 x 10 x 15 cm³**, 2 fibers glued in. Reflector: chemical one plus Tyvek paper.

WLS fibers: **3 m long Y11 Kuraray** multi-clad, 1 mm diameter.

Tested samples of 15- and 20-cm width

Two slabs were manufactured: 0.7x15x120 and 0.7x20x120 cm³ with 3 and 4 grooves. WLS Y11 fibers of 3 m length were glued in. Readout was implemented with 3x3 mm² MPPCs, a single MPPC at one scintillator end.

Readout and trigger for cosmic tests

Cosmic trigger is a coincidence of two scintillator counters:

Upper counter: 2 x 20 cm² Bottom counter: 7 x 7 cm²

Front-end electronics:

Signals from MPPCs are amplified by a custom-made preamp with gain of 20, then sent to the digitizer CAEN DT5742

> **CAEN digitizer DT5742:** 16 channels, 5 GHz sampling rate, 200 ns time window at 5 GHz, 12-bit resolution

The signal charge: area of signal waveform normalized to photoelectrons **The signal timing:** constant fraction (0.1) of a signal front

Digitized signal waveforms

Specification of tested Hamamatsu MPPCs

Tested photodiodes are of the same generation and similar parameters, the differences are the total sensitive area size and pixel size

	S12572-050C	S12571-025C
Sensitive area size :	3x3 mm ²	1x1 mm ²
Number of pixels :	3600	1600
Pixel size :	50x50 μm²	25x25 μm²
Gain :	1.25 x10 ⁶	5.15 x10 ⁵
Operating voltage:	~ 67.6 V	~ 68.5 V
Peak spectral sensitivity	: 450 nm	450 nm
Dark count (typical):	1000 kHz	100 kHz
Crosstalk:	~ 25 %	~ 22 %
PDE at 500 nm:	~35 %	~35 %

3x3 mm² MPPC, 5-cm wide counters, 1 layer

3 m long fibers. Timing is calculated for combination $(T_1 - T_R)/2$.

Different counters or combinations of two counters located horizontally (a single layer) are viewed by a single 3x3 mm MPPC at each end

Viewed counters	Light yield, ph.e./MIP	Timing σ, ns	Number of layers
1U	80	0.85	1
2U	81	0.84	1
1D	76	0.85	1
2D	83	0.85	1
1U+2U	84	0.87	1
1D+2D	83	0.86	1

3x3 mm² MPPC, 5-cm wide counters, 2 layers

3 m long fibers. Timing is calculated for combination $(T_L-T_R)/2$.

Different combinations of two layers are viewed by a single 3x3 mm MPPC at each end

Viewed counters	Light yield, ph.e./MIP	Timing σ, ns	Number of layers
1U+1D	164	0.63	2
2U+2D	171	0.63	2
1U+1D+ 2U+2D	175	0.64	2

3x3 mm² MPPC, 10-cm wide counters

3 m long fibers. Timing is calculated for combination $(T_1 - T_R)/2$.

The counters or two counters combined are viewed by a single 3x3 mm MPPC at each end

Viewed counters	Light yield, ph.e./MIP	Timing σ, ns	Number of layers
U	88.6	0.84	1
D	88.0	0.76	1
U+D	188	0.60	2

 \bigcirc

Switch to using 1 mm MPPCs

The optical connectors for 1 mm MPPCs were glued on fibers in the same tested counters.

The measurements were repeated with MPPCs connected in parallel.

1x1 mm² MPPC, 10-cm wide counters, parallel connection of MPPCs

3 m long fibers. Timing is calculated for combination $(T_L - T_R)/2$.

Configuration:

All fibers at each end are coupled to individual 1x1 mm² MPPCs. All MPPCs at one side are connected in parallel.

Viewed counters	Light yield, ph.e./MIP	Timing σ, ns	Number of layers
U	72.0	0.81	1
D	67.4	0.86	1
U+D	128.3	0.60	2

Spectra for parallel connection of 4 MPPCs

3x3 mm² MPPC vs 1x1 mm² MPPC

3x3 mm² MPPC provide slightly better light yield over 1x1 mm² MPPC because of higher PDE (larger pixel size).

The time resolution is almost the same in both cases, the readout by 3x3 mm² MPPC or 1x1 mm² MPPCs connected in parallel.

Conclusion: no difference if merge WLS fibers light on a single large MPPC or sum pulses from small MPPCs in parallel.

Time resolution vs number of layers

Measurements were done to study how the timing depends on the number of scintillator layers.

1x1 mm² MPPC, 4 counters, individual readout

Rig	,ht
Left	

3 m long fibers. Timing is calculated for combination $(T_L-T_R)/2$.

Configuration:

All fibers at each end are coupled to an individual 1x1 mm MPPC. Each MPPC is amplified and digitized.

Viewed counters	Light yield, ph.e./MIP	Timing σ, ns	Number of layers
1U	48	0.99	1
2U	64	0.86	1
1D	57	0.87	1
2D	64	0.85	1
1D+2D	122	0.62	2
All 4 layers	233	0.48	4

1x1 mm² MPPC in parallel, 4 counters

3 m long fibers. Timing is calculated for combination $(T_L-T_R)/2$.

Configuration:

All fibers at each end are coupled to an individual 1x1 mm MPPC. All MPPCs at each side are connected in parallel.

Viewed counters	Light yield, ph.e./MIP	Timing σ, ns	Number of layers
2D+2U	126	0.60	2
1D+2D	130	0.57	2
1D+2D+2U 180		0.50	3
All 4 layers	220	0.45	4

3x3 mm² MPPC, 4 counters

Right

3 m long fibers. Timing is calculated for combination $(T_L - T_R)/2$.

Configuration: All fiber ends at each side are coupled to a single 3x3 mm MPPC.

Viewed counters	Light yield, ph.e./MIP	Timing σ, ns	Number of layers
1U+2U	164	0.63	2
1D+2D	171	0.63	2
1D+2D+2U 239		0.53	3
All 4 layers	334	0.46	4

Time resolution vs number of layers

Parameters vs scintillator width

All fibers were read out by 3x3 mm² MPPCs, a single MPPC at one end. WLS fibers: 3-m long Kuraray Y11 of 1 mm diameter. Fiber spacing: 5 cm. Scintillator thickness: 0.7 mm. Number of layers: 1.

Width	Number of fibers	Timing σ, ns	Light yield, ph.e./MIP
5 cm	1	0.85	80.0
10 cm	2	0.80	88.3
15 cm	3	0.87	78.6
20 cm	4	0.86	78.1

Spectra for the 20-cm wide slab

A single scintillator slab of 0.7x20x120 cm³ size with 4 WLS 3-m long fibers. Cosmic muons spectra were obtained over the center line across the slab.

Proposed TOF counter conception

The TOF counter consists of two scintillator slabs of 0.7x20x270 cm³ size.

Four WLS Kuraray Y11 fibers of 1 mm diameter are glued in the slab.

8 WLS fibers are bundled within a scintillator slab at each side of the counter into a connector. Connector is mounted directly at the scintillator.

The fibers are read out by a single 3x3 mm² MPPC at each side.

Expected time resolution σ is 630-650 ps.

Number of TOF channels for the outer level

TOF outer layers are mounted at the inner surface of e-m. calorimeter. Simplified picture combines both inner barrel and POD parts of e.-m. calorimeter, total size is about $2.6 \times 2.8 \times 6.3 \text{ m}^3$.

Estimation to the max coverage:

Length of sci. slabs: 260-270 cm Width of sci. slabs: 20 cm Two slabs per a TOF counter, both side readout.

Number of TOF counters: 152 Number of readout ch. : 304

Number of sci. slabs : 304 Total sci. weight: ~1300 kg Number of 3x3 mm² MPPCs : 304 WLS fiber length: 3.6 km

Number of channels in TOF inner layer around the active target is more difficult to estimate and depends on the configuration of the active target and TOF counters.