4π selection with ND280 Upgrade CERN Workshop

M. Lamoureux

SPP, CEA Saclay

March 21, 2017

Configurations

Legend: WAGASCI-like target, FGD, VTPC, HTPC, P0D, DsECal Schematics not on scale, only basket is represented

Motivations

Compare current ND280 performance with ND280 upgrade configurations (both reference and alternatives):

- selection efficiency
- expected statistics
- contaminations in the selection
- sensitivity to physics models

Method

All is done inside a simplified framework (with pseudo-reconstruction and simple selection criteria) with simplified geometries (current-like, upgrade-like)

In the following, all the studies have been performed with these simplified geometries.

Contents

- Selection
- 2 Efficiencies
- Topology separation
- 4 Conclusion

Selection

Selection in Highland

PID cuts

TPC PID using muon and MIP likelihood

ECal PID using MipEM and E/L

Efficiencies

Current configuration

- Forward eff. is similar to current ND280 analysis ones
- Backward eff. is higher as we assume perfect sense determination
- No HA TPC component (as there is no horizontal TPCs)

Upgrade reference configuration

Assumed scintillator-only

- Forward eff. is similar to current ND280
- Important HA TPC component

Alternative: Target (water) \rightarrow Fwd TPC 1

- "Standard" behaviour for FGDs
- Large HA TPC efficiency for Target

Alternative: Fwd TPC $1 \rightarrow \text{Target (water)}$

- Contribution of the new horizontal TPCs for backward events in FGD1
- HA TPC component dominates for Target

Efficiencies: summary

Efficiencies: summary

Efficiencies: summary

Number of events (summary)

Events after selection ($/10^{21}$ POT)

configuration	Tgt/FGD 1	Tgt/FGD 2	Tgt (for alt.)
current	51417	49825	
ref.	72012	24251	
alt. $Target(60cm) \rightarrow TPC$	51601	49699	108045
alt. TPC \rightarrow Target(60cm)	51596	49593	102807

- Similar number of events for current and upgrade ref. configuration
- More events in alternative thanks to the new water-target

Example of study with this statistics:

Carbon-Oxygen cross-section ratio:

What is the improvement on the statistical error on the ratio?

preliminary plot with reference upgrade \longrightarrow

Topology separation

Strategy

Goal

To be able to check possible contaminations with the different geometries and to make a near detector fit

- ullet TPC pions: using TPC PID, identify π^+/π^- and e^+/e^- from π^0
- Target/FGD pions: target only tracks > 5 cm and true pion ID^1
- Michel Electrons: true electrons with $t_{vtx} t_{MF} > 100$ ns

Separation

- CC0 π selection: $N_{\pi^+}=0$, $N_{\text{other}}=0$
- CC1 π^+ selection: $N_{\pi^+} = 1$, $N_{\text{other}} = 0$
- CC-other selection: $N_{\pi^+} > 1$ or $N_{\text{other}} > 0$

¹separation between proton and muon in FGD is actually quite good, see T2K-TN-103

Preliminary selection efficiencies

Selection purity for CC- 0π

When applying CC- 0π selection, what is the composition of events?

	%	CC-0π	$CC ext{-}1\pi$	CC-oth	BKG
current	FGD 1	84.7	3.06	9.14	3.06
	FGD 2	85.3	3.03	8.59	3.08
reference	Tgt 1	89.7	2.05	6.57	1.64
	Tgt 2	87.9	1.29	8.1	2.75
alt. Target(60cm) \rightarrow TPC	FGD 1	85.1	2.76	9.24	2.88
	FGD 2	85.3	3.04	8.8	2.9
	Tgt 1	89.6	2.08	6.86	1.5
alt. TPC→Target(60cm)	FGD 1	85.1	2.89	9.13	2.85
	FGD 2	85.4	3.01	8.64	2.94
	Tgt 1	88.9	2.14	7.33	1.64

Selection purity for CC- 1π

When applying CC- 1π selection, what is the composition of events?

	%	CC-0π	$CC ext{-}1\pi$	CC-oth	BKG
current	FGD 1	1.63	63.2	31.3	3.88
	FGD 2	2.09	67.9	25.9	4.14
reference	Tgt 1	1.88	68.8	26.7	2.67
	Tgt 2	1.12	77.4	18.4	3.1
alt. Target(60cm) \rightarrow TPC	FGD 1	1.49	63.4	31.3	3.86
	FGD 2	2.31	67.8	26.2	3.73
	Tgt 1	2.1	66.5	28.9	2.49
alt. TPC→Target(60cm)	FGD 1	1.67	62.8	31.6	3.94
	FGD 2	2.29	67.7	25.8	4.22
	Tgt 1	2.14	61.4	33.7	2.69

Selection purity for CC-other

When applying CC-other selection, what is the composition of events?

	%	CC-0π	$CC ext{-}1\pi$	CC-oth	BKG
current	FGD 1	2.93	16.8	73.8	6.47
	FGD 2	2.79	16.8	73.9	6.49
reference	Tgt 1	3.3	19.3	72.2	5.25
	Tgt 2	2.94	21.4	69.3	6.35
alt. Target(60cm) \rightarrow TPC	FGD 1	3.33	16.7	73.7	6.2
	FGD 2	3.03	18.1	71.6	7.34
	Tgt 1	3.38	19	72.6	5
alt. TPC \rightarrow Target(60cm)	FGD 1	3.18	16.7	74	6.08
	FGD 2	2.87	17.3	73.6	6.28
	Tgt 1	2.51	19.5	72.9	5.04

Conclusion

Summary

- $\nu_\mu CC$ -inclusive selection is implemented and selection efficiencies have been computed, with still some approximations
 - targets in upgrade configurations covers better high angle region $(\varepsilon \sim 50-60\%) \Rightarrow$ important for physics !
 - water target has a lower backward efficiency than FGD, even though
 it is either compensated by empty target (upgrade reference) or FGDs
 (upgrade alternatives)
- CC- 0π , CC- $1\pi^+$, CC-other selections have been implemented.
 - still preliminary as target/FGD-reconstruction is not implemented in the software
- Next steps:
 - implement time-of-flight to determine track sense / use for PID
 - propagate selection efficiencies to BANFF-like fit
 - software is ready to begin real physics analysis (transverse variables, C/O cross-section ratio, ...)

Backups

Current ND280 analysis efficiencies

From T2K-TN-245 " ν_{μ} CC event selections in the ND280 tracker using Run 2+3+4 data"

ECal branch selection

ECal efficiencies

The upgrade framework does not have full ECal reconstruction (building a track from the hits).

- We take all the true tracks reaching ECal
- We apply ECal efficiencies on it:
 - $\varepsilon_{reco} \sim 30\%$ for $0 < p_{\mu} < 300$ MeV/c
 - $arepsilon_{reco} \sim 50\%$ for $300 < p_{\mu} < 900$ MeV/c
 - ullet $arepsilon_{reco}\sim$ 40% for $p_{\mu}>$ 900 MeV/c
- Same thing is done for FGD-ECal matching efficiencies (we assume same for Target-ECal matching)
- Muon is asked to stop in ECal to reconstruct momentum-by-range

ECal PID

ECal PID variables MipEM and E/L are thrown randomly using pdf from current ECal reconstruction. The PID cuts are done on these variables.

27

Pion reconstruction

Done similarly to current ND280 analysis

- TPC tracks: look for Target-TPC or FGD-TPC tracks
 - if charge > 0 and not proton PID
 - if $\mathcal{L}_{\pi} > \mathcal{L}_{e} \Rightarrow$ identified as $\pi^{+} \Rightarrow N_{\pi^{+}, TPC}$
 - else \Rightarrow identified as positron from $\pi^0 \Rightarrow N_{\pi^0,e^+,TPC}$
 - if charge < 0 and not muon candidate
 - if $\mathcal{L}_{\pi}/(\mathcal{L}_{\pi}+\mathcal{L}_{e})>0.8\Rightarrow$ identified as $\pi^{-}\Rightarrow N_{\pi^{-},TPC}$
 - else \Rightarrow identified as electron from $\pi^0 \Rightarrow N_{\pi^0,e^-,TPC}$
- Iso-target tracks: look for Target/FGD-only tracks
 - if length < 5 cm, it is considered not reconstructed
 - if length > 5 cm, it is considered perfectly identified (separation between protons and pions is actually quite good) $\Rightarrow N_{iso,\pi}$
- Michel Electrons: look for true electronsin target/FGD more than 100 ns away from vertex time
 - apply 50% efficiency on these electrons (T2K TN 104) \Rightarrow N_{ME}

Topology separation

$$N_{\pi^+} = N_{\pi^+, TPC} + max(N_{iso,\pi}, N_{ME})$$

 $N_{\text{other}} = N_{\pi^-, TPC} + N_{\pi^0, e^+} + N_{\pi^0, e^-}$

Separation

- CC0 π selection: $N_{\pi^+}=0$, $N_{\text{other}}=0$
- CC1 π^+ selection: $N_{\pi^+} = 1$, $N_{\text{other}} = 0$
- CC-other selection: $N_{\pi^+} > 1$ or $N_{\text{other}} > 0$

Michel electron tagging

- \bullet Following T2K-TN-104, we look for electrons with delay > 100 ns.
- As we don't have any FGD/Target reconstructions, we cannot look for hits, but for a true electron and apply 50% selection efficiency (final ME selection efficiency of T2K-TN-104)

TN-104

This selection

