ttH and Exotics in tt+bb final states

with the ATLAS experiment

Michele Pinamonti Università & INFN Roma Tor Vergata

Workshop "DaMESyFLa in the Higgs era" 15-17 March 2017, SISSA Trieste

Introduction

- Title: " $t\bar{t}H$ and Exotics in $t\bar{t}+b\bar{b}$ final states with the ATLAS experiment"
 - alias "What I have been working on in the past several years"
 - or "Why I have been working on this for so many years"
 - most of the material based on latest ATLAS conference note on <u>ttH search in H → bb channel at 13 TeV</u>,
 released for <u>ICHEP 2016</u>

 ► ATLAS-CONF-2016-080
- What I will talk about:
 - latest **results** from 13 TeV data
 - details on different aspects of the analysis techniques, mainly:
 - analysis <u>strategies</u> for complicated final states
 - profile-likelihood <u>fit</u> technique
 - <u>tt background</u> modeling
 - multi-variate techniques for signal discrimination

ttH(bb) analysis in ATLAS ttH: importance and overview

- Associated production of SM Higgs boson with top-quark pair:
 - still not estabilished experimentally
 - important to assess <u>y</u>_t at tree level
 - CP properties of *ttH* coupling?

- from experiment point of view, other reasons to look at *ttH*:
 - <u>compilcated signature</u>, with many final state objects, huge irreducible backgrounds (espcially *H*→*bb* channel)...
 - ► interesting **New Physics** processes have similar signatures

ttH(bb) analysis in ATLAS The ttH, H→bb chanel 2 1

- Opportunities and challenges:
 - ► H→bb highest BR
 - ► *H* decay fully visible

- <u>b-tagging</u> never perfect: lower efficiency, more background entering selection
- combinatorial background
- Use semi-leptonic or dileptonic tt decays to trigger events:

lepton + 6 jets or opposite-sign dilepton + 4 jets

ttH(bb) analysis in ATLAS ATLAS in a nut shell

- Run 1 collected 5 + 20 fb-1 of pp data at 7-8 TeV in 2010-2012
- Run 2 collected so far ~36 fb-1 at 13 TeV in 2015-2016
 - expected to re-start to take data next ~May
- Results shown here based on ≤ 13.2 fb⁻¹ at 13 TeV

ttH(bb) analysis in ATLAS b-tagging

 Jets originated from b-quark fragmentation can be tagged taking advantage of presense of a <u>secondary vertex</u> within the jet

ATLAS uses advanced <u>muti-variate techniques</u> to combine several observables for each jet to distinguish *b*-jets from non-*b*-jets (*c* or light)

► mv2c10 algorithm ► ATL-PHYS-PUB-2016-012

different working points,
 with different efficiencies and rejections vs. c and light

В	DT Cut Value	b-jet Efficiency [%]	c-jet Rejection	Light-jet Rejection	τ Rejection
	0.9349	60	34	1538	184
	0.8244	70	12	381	55
	0.6459	77	6	134	22
	0.1758	85	3.1	33	8.2

Displaced

Tracks

Secondary

Primary Vertex

- input variables not expected to be perfectly modeled by MC simulation
 - <u>b-tagging calibrations</u> needed, to correct MC according to <u>b-tagging</u> efficiencies measured in data, separately for <u>b-</u>, <u>c-</u> and light jets

ttH(bb) analysis in ATLAS Analysis Strategy

- Divide et impera:
 - events passing pre-selection categorised according to
 jet and b-tagged jet multiplicity

 ATLAS
 Simulation
 - these different regions have different:
 - ▶ signal content

ATLAS Simulation Preliminary $\sqrt{s} = 13 \text{ TeV}$, 13.2 fb⁻¹ Dilepton

ATLAS Simulation Preliminary $\sqrt{s} = 13 \text{ TeV}, 13.2 \text{ fb}^{-1}$ Single Lepton

ttH(bb) analysis in ATLAS Analysis Strategy - II

- Divide et impera:
 - events passing pre-selection categorised according to jet and b-tagged jet multiplicity
 - these different regions have different:
 - signal content
 - background composition

ttH(bb) analysis in ATLAS Analysis Strategy - III

• In each region (control and signal) a kinematical distribution is built:

 $-H_T = \sum p_T^{\text{jet}} (+p_T^{\text{lep}} \text{ for dilep})$ or multi-variate disriminant

ttH(bb) analysis in ATLAS Analysis Strategy - IV

 Considering <u>all regions and bins</u> in the analysis has several <u>advantages</u>:

- recover signal not entering the most sensitive SR
- give confidence in the background modeling in regions with no signal
- allow to <u>extract information</u> from the data on backgrounds and detector effects:
 - "in situ calibration" or "systematic uncertainty constraint"

ttH(bb) analysis in ATLAS Profile Likelihood Fit

- The <u>profile likelihood</u> technique is used when fitting models with more than one unknown parameter:
 - ▶ parameter(s) of interest (POI or μ)
 - ► <u>nuisance parameter(s)</u> (θ)

Model systematic uncertainties of a physics quantity

- Many analyses have this structure:
 - split into control, validation, signal regions, each with multiple bins and observables

observable 1

- Build a global likelihood function for all the bins, including all the parameters:
 - written as product of <u>Poisson measurements</u> in CRs and SRs plus a <u>probability density function for systematics</u>

$$L(\boldsymbol{n}, \boldsymbol{\theta}^{0} | \mu_{\text{sig}}, \boldsymbol{b}, \boldsymbol{\theta}) = P_{\text{SR}} \times P_{\text{CR}} \times C_{\text{syst}}$$

$$= P(n_{S} | \lambda_{S}(\mu_{\text{sig}}, \boldsymbol{b}, \boldsymbol{\theta})) \times \prod_{i \in \text{CR}} P(n_{i} | \lambda_{i}(\mu_{\text{sig}}, \boldsymbol{b}, \boldsymbol{\theta})) \times C_{\text{syst}}(\boldsymbol{\theta}^{0}, \boldsymbol{\theta})$$

ttH(bb) analysis in ATLAS Profile Likelihood Fit - nuiscances

- Inclusion of systematic uncertainties implies:
 - "prior" or "penalty term" (usually Gaussian) in C_{syst} , reflecting a priori knowledge of certain parameter
 - from previous data, calibration, theory prediction

$$L(\mu, \theta) = L_{Pois}(\mu, \theta) \left\{ \prod_{p} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\theta_p^2}{2}\right) \right\}$$

- dependence of predicted \boldsymbol{s} and \boldsymbol{b} on the parameters $\boldsymbol{\theta}$
 - ▶ begin with templates of x (s or b in a given bin) at given values of $\theta = [-1,0,1]$
 - then continuous interpolation between variations and nominal templates

ttH(bb) analysis in ATLAS Profile Likelihood Fit - nuiscances - II

Example of nuisance parameters:

- **JES** (jet energy scale):
 - jet energy calibration gives correction of MC for jet p_T spectrum, with uncertainties (+1 σ , -1 σ)
 - MC prediction for s and b corrected by this calibration is taken as nominal
 - ► MC prediction for **s** and **b** corrected by this calibration + 1 σ is taken as $\mathbf{s}(\theta_{\text{JES}}=1)$, $\mathbf{b}(\theta_{\text{JES}}=1)$
 - ► MC prediction for **s** and **b** corrected by this calibration 1 σ is taken as $\mathbf{s}(\theta_{\text{JES}}=-1)$, $\mathbf{b}(\theta_{\text{JES}}=-1)$

- Parton Shower and Hadronisation for tt.

- nominal tt background prediction taken from MC generated with Powheg+Pythia
- ▶ b̄t̄(θ_{PS}=1) taken from MC generated with Powheg+Herwig
- ▶ $\boldsymbol{b}^{\bar{t}}(\theta_{PS}=-1)$ built symmetrising: $\boldsymbol{b}^{\bar{t}}(\theta_{PS}=0)$ $(\boldsymbol{b}^{\bar{t}}(\theta_{PS}=1)+\boldsymbol{b}^{\bar{t}}(\theta_{PS}=0))$

ttH(bb) analysis in ATLAS Profile Likelihood Fit - minimisation

With such a likelihood defined
 <u>measurement</u> of the parameter of interest (*POI*, or μ)
 becomes a *N*-dimensional likelihood maximisation
 (or log-likelihood minimisation) problem

$$N = N_{POI} + N_{NP}$$

- The result of the fit is:
 - a value for the POI, with its uncertainty
 - and a set of <u>values for the NPs</u>, with their uncertainties
 - post-fit uncertainty on a NP smaller than the prior
 → improved knowledge on that NP
 - uncertainty on POI affected by the presence of NPs, by their priors and post-fit uncertainty, and correlations between NPs and POI
 - fitted value of POI depends on the NPs as well (!)

ttH(bb) analysis in ATLAS tt background modeling

- tt+jets dominant background:
 - while <u>tt predictions</u> available with <u>high precision</u> (NNLO, differential),
 QCD emission of <u>extra jets</u> (light and heavy flavour (HF)) suffer from <u>larger uncertainties</u> in perturbative predictions and from parton shower
- In ATLAS $t\bar{t}H(b\bar{b})$ analysis:
 - NLO+PartonShower tt events (5FS) generated with <u>Powheg+Pythia6</u>
 - **split** into $t\bar{t}$ +light, $t\bar{t}$ +≥1c, $t\bar{t}$ +≥1b
 - categorisation made considering flavour of hadrons inside particle jets not matched to partons from t decay
 - $t\bar{t}$ +light and +≥1c corrected to NNLO for p_{T} and p_{T}
 - tt+≥1b corrected to dedicated tt+bb
 NLO+PartonShower prediction from SherpaOpenLoops
 (sub-categories and kinematics)

ttH(bb) analysis in ATLAS tt background modeling - systematics

- 16
- Sophisticated set of <u>systematic uncertainties</u> related to tt modelling:
 - 3 alternative MC predictions compared to nominal for 5FS:
 - parton shower and hadronisation variation from Powheg+Herwig++
 - NLO matrix element generator variation from aMC@NLO
 - "radiation" variations (up/down) obtained by varying different parameters in Powheg+Pythia6 controlling amount of ISR/FSR
 - NNLO x-section uncertainty applied to $t\bar{t}$ +light normalisation
 - <u>tt+≥1c</u>, <u>tt+≥1b</u> normalisations left <u>free-floating</u> in the fit
 - for tt+≥1b:
 - full set of dedicated <u>uncertainties on SherpaOpenLoops</u> applied
 - residual uncertainties from the three sources above after correcting each of them to nominal SherpaOpenLoops kinematics
 - ► 2 <u>alternative 4FS *tt+bb*</u> predictions (<u>aMC@NLO</u>+Pythai8/+Herwig++) used to derive additional ME and PS uncertainties on reweighting
 - for *tt*+≥1c:
 - correction to dedicated 4FS tt+cc predictions (aMC@NLO+Pythai8) used as additional systematic

ttH(bb) analysis in ATLAS tt background modeling - systematics - II

Systematic source	How evaluated	$t\bar{t}$ categories
$t\bar{t}$ cross-section	±6%	All, correlated
NLO generator (residual)	Powheg-Box + Herwig++ vs. MG5_aMC + Herwig++	All, uncorrelated
Radiation (residual)	Variations of μ_R , μ_F , and <i>hdamp</i>	All, uncorrelated
PS & hadronisation (residual)	Powheg-Box + Pythia 6 vs. Powheg-Box + Herwig++	All, uncorrelated
NNLO top & $t\bar{t}$ $p_{\rm T}$	Maximum variation from any NLO prediction	$t\bar{t} + \geq 1c$, $t\bar{t}$ +light, uncorr.
$t\bar{t} + b\bar{b}$ NLO generator reweighting	SherpaOL vs. MG5_aMC+ Pythia8	$t\bar{t} + \ge 1b$
$t\bar{t} + b\bar{b}$ PS & hadronis. reweighting	MG5_aMC + Pythia8 vs. MG5_aMC + Herwig++	$t\bar{t} + \ge 1b$
$t\bar{t} + b\bar{b}$ renorm. scale reweighting	Up or down a by factor of two	$t\bar{t} + \ge 1b$
$t\bar{t} + b\bar{b}$ resumm. scale reweighting	Vary $\mu_{\rm Q}$ from $H_{\rm T}/2$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \ge 1b$
$t\bar{t} + b\bar{b}$ global scales reweighting	Set μ_Q , μ_R , and μ_F to μ_{CMMPS}	$t\bar{t} + \ge 1b$
$t\bar{t} + b\bar{b}$ shower recoil reweighting	Alternative model scheme	$t\bar{t} + \ge 1b$
$t\bar{t} + b\bar{b}$ PDF reweighting	CT10 vs. MSTW or NNPDF	$t\bar{t} + \ge 1b$
$t\bar{t} + b\bar{b}$ MPI	Up or down by 50%	$t\bar{t} + \geq 1b$
$t\bar{t} + b\bar{b}$ FSR	Radiation variation samples	$t\bar{t} + \geq 1b$
$t\bar{t} + c\bar{c}$ ME calculation	MG5_aMC + Herwig++ inclusive vs. ME prediction	$t\bar{t} + \ge 1c$

ttH(bb) analysis in ATLAS tt background modeling - MC settings

ME gen.	MG5_aMC	MG5_aMC	SherpaOL
PS/UE gen.	Herwig++ 2.7.1	Pythia 8.210	Sherpa
Renorm. scale	$\mu_{ ext{CMMPS}}$	$\mu_{ ext{CMMPS}}$	$\mu_{ ext{CMMPS}}$
Fact. scale	$H_{\mathrm{T}}/2$	$H_{\mathrm{T}}/2$	$H_{\mathrm{T}}/2$
Resumm. scale	$f_{\mathbf{Q}}\sqrt{\hat{s}}$	$f_{\mathbf{Q}}\sqrt{\hat{s}}$	$H_{\mathrm{T}}/2$
ME PDF	NNPDF3.0 4F	NNPDF3.0 4F	CT10 4F
PS/UE PDF	CTEQ6L1	NNPDF2.3	
Tune	UE-EE-5	A14	Author's tune

ME gen.	Powheg-Box	Powheg-Box	MG5_aMC	Powheg-Box	Powheg-Box
PS/UE gen.	Pythia 6.428	Herwig++2.7.1	Herwig++2.7.1	Pythia 6.428	Pythia 6.428
Ren. scale	$\sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$\sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$\sqrt{m_t^2 + \frac{1}{2}(p_{\mathrm{T},\mathrm{t}}^2 + p_{\mathrm{T},\bar{\mathrm{t}}}^2)}$	$\frac{1}{2} \cdot \sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$2 \cdot \sqrt{m_t^2 + p_{\mathrm{T},\mathrm{t}}^2}$
Fact. scale	$\sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$\sqrt{m_t^2 + p_{\mathrm{T,t}}^2}$	$\sqrt{m_t^2 + \frac{1}{2}(p_{\mathrm{T},\mathrm{t}}^2 + p_{\mathrm{T},\bar{\mathrm{t}}}^2)}$	$\frac{1}{2} \cdot \sqrt{m_t^2 + p_{\mathrm{T},\mathrm{t}}^2}$	$2 \cdot \sqrt{m_t^2 + p_{\mathrm{T},\mathrm{t}}^2}$
hdamp	m_t	m_t	_	$2 \cdot m_t$	m_t
ME PDF	CT10	CT10	CT10	CT10	CT10
PS/UE PDF	CTEQ6L1	CTEQ6L1	CTEQ6L1	CTEQ6L1	CTEQ6L1
Tune	P2012	UE-EE5	UE-EE5	P2012 radHi	P2012 radLo

ttH(bb) analysis in ATLAS Event reconstruction

19

The event reconstruction issue:

- pairing jets with partons from t^{had} , t^{lep} , H not an easy task
 - ▶ jet energy resolution, jets falling outside acceptance, mis-b-tags, additional radiation, pile-up...
- can use a <u>multi-variate technique</u> to solve the problem in the best possible way → boosted-decision-tree (BDT) used by ATLAS

ttH(bb) analysis in ATLAS Event reconstruction - II

- BDT-based ttH system reconstruction, "reconstruction BDT":
 - build a BDT to distinguish <u>correct combinations</u>
 vs. incorrect ones in simulated *ttH* events:
 - treat each combination of jet-parton assignments as a different event
 - treat correct combinations as signal, incorrect ones as background
 - ▶ use many variables for each combination, like angle between jets in H candidate, mass of hadronic t, angle between t and H...

 take the <u>combination with highest BDT score</u> in data as most likely correct combination

ttH(bb) analysis in ATLAS Multi-variate discriminant

After system reconstruction, "classification BDT" to distinguish ttH from tt

- combine <u>outputs of reconstruction BDT</u>

with other kinematic variables

Variable	Definition	Region				
		≥ 6j, ≥ 4b	≥ 6j, 3b	5j, ≥ 4b		
	General kinematic variables					
$\Delta R_{ m bb}^{ m avg}$	Average ΔR for all <i>b</i> -tagged jet pairs	✓	√	√		
$\Delta R_{bb}^{\max p_T}$	ΔR between the two <i>b</i> -tagged jets with the largest vector sum p_T	✓	_	-		
$\Delta \eta_{ m ii}^{ m max}$	Maximum $\Delta \eta$ between any two jets	✓	✓	✓		
$m_{ m bb}^{ m min} \Delta R$	Mass of the combination of the two b -tagged jets with the smallest ΔR	✓	✓	-		
$m_{ m jj}^{ m min~}\Delta R$	Mass of the combination of any two jets with the smallest ΔR	_	_	✓		
$m_{ m bj}^{ m max~}{}^{p_T}$	Mass of the combination of a b -tagged jet and any jet with the largest vector sum p_T	_	✓	-		
$p_{\mathrm{T}}^{\mathrm{jet5}}$	$p_{\rm T}$ of the fifth leading jet	✓	✓	✓		
N _{bb} ^{Higgs 30}	Number of <i>b</i> -jet pairs with invariant mass within 30 GeV of the Higgs boson mass	✓	_	✓		
$N_{40}^{ m jet}$	Number of jets with $p_{\rm T} \ge 40 \text{ GeV}$	_	✓	-		
$H_{ m T}^{ m had}$	Scalar sum of jet p_T	_	✓	✓		
$\Delta R_{ m lep-bb}^{ m min}$	ΔR between the lepton and the combination of the two <i>b</i> -tagged jets with the smallest ΔR	_	_	✓		
Aplanarity	$1.5\lambda_2$, where λ_2 is the second eigenvalue of the momentum tensor [41] built with all jets	✓	✓	✓		
Centrality	Scalar sum of the p_T divided by sum of the E for all jets and the lepton	✓	✓	✓		
H1	Second Fox-Wolfram moment computed using all jets and the lepton	✓	✓	✓		
Variables from reconstruction BDT output						
BDT output		✓*	✓*	✓*		
$m_{ m H}$	Higgs boson mass	✓	✓	✓		
$m_{ m H,\it b_{ m lep\ top}}$	Mass of Higgs boson and b-jet from leptonic top	✓	_	-		
$\Delta R_{ m Higgs\ bb}$	ΔR between <i>b</i> -jets from the Higgs boson	✓	✓	✓		
$\Delta R_{\mathrm{H},tar{t}}$	ΔR between Higgs boson and $t\bar{t}$ system	✓*	✓*	√*		
$\Delta R_{\rm H, lep\ top}$	ΔR between Higgs boson and leptonic top	✓	_	_		
$\Delta R_{ m H, \it b_{ m had top}}$	ΔR between Higgs boson and b -jet from hadronic top	_	✓*	✓*		

<u>u BD I</u>	_					
Variable	Definition	I .	Region	2: 21		
Conoral kina	motic verichles	$\geq 4j, \geq 4b$	≥ 4j, 3b	3j, 3b		
General kinematic variables $ \Delta \eta_{bb}^{\text{avg}} \text{Average } \Delta \eta \text{ among pairs of } b\text{-jets} $						
$\begin{array}{c c} \Delta \eta_{bb} \\ \Delta \eta_{bb}^{ m max} \end{array}$	Maximum $\Delta \eta$ between any two <i>b</i> -jets	_	_	_		
$\left[egin{array}{c} \Delta\eta_{ m bb}^{ m avg} \ \Delta\eta_{ m jj}^{ m avg} \end{array} ight]$	Average $\Delta \eta$ among jet pairs	_	\ \ \	_		
$\Delta R_{bb}^{\max p_T}$	ΔR between the two <i>b</i> -tagged jets with the largest vector sum p_T	✓	√	✓		
$\Delta R_{ m bb}^{ m Higgs}$	ΔR between the two <i>b</i> -tagged jets with mass closest to the Higgs boson mass	✓	-	-		
$\Delta R_{ m bb}^{ m max\ m}$	ΔR between the two <i>b</i> -jets with the largest invariant mass	✓	✓	✓		
$m_{ m bb}^{ m max~} p_T$	Mass of the two <i>b</i> -tagged jets with the largest vector sum p_T	_	_	✓		
$m_{ m bb}^{ m Higgs}$	Mass of the two <i>b</i> -tagged jets closest to the Higgs boson mass	✓	✓	✓		
$m_{ m bb}^{ m min}$	Minimum mass of two b-tagged jets	-	-	✓		
$m_{ m bb}^{ m min} \Delta R$	Mass of the combination of the two b -tagged jets with the smallest ΔR	✓	✓	✓		
$p_{\mathrm{T},b}^{\mathrm{min}}$	Minimum b -tagged jet p_T	-	_	✓		
$H_{ m T}^{ m all}$	Scalar p_T sum of all leptons and jets	_	✓	✓		
N _{bb} ^{Higgs 30}	Number of <i>b</i> -jet pairs with invariant mass within 30 GeV of the Higgs boson mass	✓	-	✓		
N _{jj} ^{Higgs 30}	Number of jet pairs with invariant mass within 30 GeV of the Higgs boson mass	_	✓	_		
Aplanarity	$1.5\lambda_2$, where λ_2 is the second eigenvalue of the momentum tensor [41] built with all jets	✓	✓	✓		
Centrality	Sum of the p_T divided by sum of the E for all jets and both leptons	✓	-	✓		
H2 _{jets}	Third Fox-Wolfram moment computed using all jets	-	✓	_		
$H4_{\rm all}$	Fifth Fox-Wolfram moment computed using all jets and leptons	_	_	✓		
Variables from reconstruction BDT output						
BDT output		√ *	√ *	_		
$m_{\rm H}$	Higgs boson mass	√ ^(*)	√ (*)	_		
$\Delta \eta_{\mathrm{H},l}^{\mathrm{min}}$	Minimum $\Delta \eta$ between the Higgs boson and a lepton	√ *	√	_		
$\Delta \eta_{\mathrm{H},l}^{\mathrm{max}}$	Maximum $\Delta \eta$ between the Higgs boson and a lepton	√ *	√	_		
$\Delta\eta_{ m H,b}^{ m min}$	Minimum $\Delta \eta$ between the Higgs boson and a b -jet	✓*	_	_		

ttH(bb) analysis in ATLAS Multi-variate discriminant - II

- 22
- After system reconstruction, "classification BDT" to distinguish ttH from tt
 - combine <u>outputs of reconstruction BDT</u>
 with <u>other kinematic variables</u>
 - done separately for each of the SRs

ttH(bb) analysis in ATLAS

Fit and results

- main output is value of $\mu_{t\bar{t}H}$, with its uncertainty
 - ▶ we also get interesting additional information, e.g. tt+HF normalisation "pulled" to ~1.5 x SM prediction...
- Systematics ranked according to contribution to total error

Uncertainty source	$\Delta \mu$	
$t\bar{t}+ \ge 1b$ modelling	+0.53	-0.53
Jet flavour tagging	+0.26	-0.26
$t\bar{t}H$ modelling	+0.32	-0.20
Background model statistics	+0.25	-0.25
$t\bar{t}+ \geq 1c$ modelling	+0.24	-0.23
Jet energy scale and resolution	+0.19	-0.19
$t\bar{t}$ +light modelling	+0.19	-0.18
Other background modelling	+0.18	-0.18
Jet-vertex association, pileup modelling	+0.12	-0.12
Luminosity	+0.12	-0.12
$t\bar{t}Z$ modelling	+0.06	-0.06
Light lepton (e, μ) ID, isolation, trigger	+0.05	-0.05
Total systematic uncertainty	+0.90	-0.75
$t\bar{t}+ \geq 1b$ normalisation	+0.34	-0.34
$t\bar{t}+ \geq 1c$ normalisation	+0.14	-0.14
Statistical uncertainty	+0.49	-0.49
Total uncertainty	+1.02	-0.89

ttH(bb) analysis in ATLAS

Results and combination

Ratio to Bkgd

ttH(bb)-like signals

VLQ

- 'Vector-like' quarks (VLQ)?
 - spin ½ but trasform as triplets (V coupling instead of V-A)
 - simplest coloured fermions still allowed by experimental data (4th generation quarks excluded by Higgs data)
 - expected at ~TeV scale (Naturalness, partial-compositness...)
 - large $y_t \Rightarrow sizable \underline{mixing with 3}^{rd} \underline{generation}$ ('top partners')
 - ► <u>decay</u> to SM particles through mixing with 3rd generation
 - simple case (singlets):

$$T(+2/3) \leftrightarrow t \rightarrow Wb, Ht, Zt$$

 $B(-1/3) \leftrightarrow b \rightarrow Wt, Hb, Zb$

ttH(bb)-like signals

Four-top quark production

• tttt production in SM \rightarrow small x-sec (~ 9 fb at 13 TeV)

- via effective contact interactions (CI)
- pair production of <u>resonances</u> dacaying to tt
- -**2HDM**: *ttH/A*, *H/A* → *tt* (*see later*)

single lepton 40.0 %

Final states with many jets and/or leptons, not necessarely very energetic (!)

multi-lepton 10.3 %

dilepton 28.8 %

fully hadronic 20.9 %

ttH(bb)-like signals Heavy Higgs and tt resonances

- Apart from 'simple' case of $Z'/g_{kk} \rightarrow t\bar{t}$
- Current experimental constraints in view of 2-Higgs Doublet Models favour heavy neutral Higgs $\rightarrow t\bar{t}$:
 - 125 GeV Higgs couplings = SM
 - \Rightarrow 'alignment limit' $(sin(\beta-\alpha)=1)$
 - \Rightarrow H/A couplings with W, Z \rightarrow 0
 - \Rightarrow H/A couplings with fermions (YH/A) depend only tanß:

(alignment limit)	Type I	Type II
Y ^{H/A} (u) [y _u]	1/tanβ	1/tanβ
$Y^{H/A}(d,\ell)[y_{d,\ell}]$	1/tanβ	tanβ

- High $tan\beta$ values excluded by $H/A \rightarrow \tau \tau$ searches
- Low and intermediate $tan\beta$ and $m_{H/A}$ > 350 GeV:
 - ⇒ *H/A*→*tt* dominant (!)

ttH(bb)-like signals

Heavy Higgs and tt resonances - II

28

• Interference between (pseudo)scalar signal and SM non-resonant background recently studied: $0.53 \atop \text{m}_{A^0} = 500 \text{ GeV} \atop \text{m/2 scattering} \atop \text{Pseudoscalar}$

- arXiv:1606.04149 [hep-ph]
- peak reduction & distortion 🖫
 - more important for larger width
- Analysis strategy for tt resonance has to evolve:
 - inclusion of interference in simulation
 - usage of angular / spin-correlation aware variables in addition of the $m_{\bar{t}}$ scan
 - look at <u>associated production</u> (with $t\bar{t}$ or $b\bar{b}$):

Four top search in ℓ +jets

► ALAS-CONF-2016-020 (3.2 fb⁻¹)

- Analysis targeting 4-top final states in <u>resolved</u> ℓ+jets
 - ► $1e/\mu + \ge 10 j$, $\ge 4 b$
- Background <u>tt+bb+jets</u>:
 - hard to model with current theory / MC predictions!

- Analysis strategy similar to ttH(bb):
- split in N(jets) and N(b-tags)
- symultaneous profile likelihood fit of $H\tau^{had}$ in all CRs and SRs
- **Validation Regions** not fitted:
 - ▶ used to validate the CR → SR extrapolation

Four top search in &+jets - II

Pre-Fit

Four top search in &+jets - III

ttH(bb)-like analyses in ATLAS Search for VLQ

▶ ALAS-CONF-2016-104 (13.2 fb⁻¹)

- Search targeting different signals in $0-1\ell + (b)$ jets:
 - **VLQ** focusing on TT → $H(b\overline{b})t+X$
 - **new 0**€, high-MET ($TT \rightarrow H(b\overline{b})t$, Z(vv)t)
 - 4-top events (SM, CI, 2UED)
 - **2HDM**: *t̄tH/A(t̄t)*, *b̄bH/A(t̄t)*, *tbH+(tb)*
- Selecting events with ≥ 6 j (≥ 7 j for 0ℓ)
- Events categorised vs. <u>N(b-tags)</u> and <u>N(mass-tagged jets)</u>:

- Fit m_{eff} in each region
- Split some of the SRs into high/low mass (HM / LM):
 - -1ℓ : $m_{bb}^{min\Delta R}$ > or < 100 GeV
 - -0ℓ : $m_{T.min}^b > \text{or} < 160 \text{ GeV}$

ttH(bb)-like analyses in ATLAS Search for VLQ - II Events / 500 GeV **ATLAS** Preliminary TT doublet (800) \sqrt{s} = 13 TeV, 13.2 fb⁻¹ tt + light-jets 50 -11, ≥2J, ≥6j, ≥4b Events tt + ≥ 1c 10' Pre-fit **ATLAS** Preliminary $\sqrt{s} = 13 \text{ TeV}, 13.2 \text{ fb}^{-1}$ Data tt̄ + ≥ 1b ΓT doublet (800) Non-tt ///// Total Bkg unc. tt + light-jets Search regions 30 + ≥ 1c Pre-fit tī + ≥ 1b 20 Non-tt ///// Total Bkg unc. 10⁴ 10³ Data / Bkg 10^{2} **B-only** 2500 500 1000 1500 2000 3000 Fit 10 Events / 500 GeV 70-ATLAS Preliminary ⊓tt + light-jets \sqrt{s} = 13 TeV, 13.2 fb⁻¹ tt + ≥ 1c 60 - 11, ≥2J, ≥6j, ≥4b $t\bar{t} + \ge 1b$ Post-fit (Bkg-only) Non-tt Data / Bkg ///// Total Bkg unc. 50 40 30 0.5 20 1J, ≥6j, 3b, LN 1J, ≥6j, 3b, HN I, ≥2J, ≥6j, ≥4b 01, 0J, ≥7j, 2t ol, oJ, ≥7j, 3b 0I, 0J, ≥7j, ≥4b lJ, ≥6j, ≥4b, HN 11, ≥2J, ≥6j, 3k 1J, ≥7j, 3b, HN 10 01, >2J, >7j, 2 Data / Bkg 1.5 0.5 500 1000 1500 2000 2500 m_{eff} [GeV]

Search for VLQ - III

- Results:
 - ▶ no excess
 - stringent <u>limits on VLQ</u> masses~1 TeV
 - <u>complementary</u> to other searches on other decay channels

▶ ALAS-CONF-2016-101 (14.7 fb⁻¹)

► ALAS-CONF-2016-102 (14.7 fb⁻¹)

ttH(bb)-like analyses in ATLAS Interpretation in 2HDM

- First limits on ttH/A, bbH/A ($H/A \rightarrow tt$)
 - for $\underline{ttH/A}$ starting to exclude low $tan\beta$ regions up to ~1 TeV, not yet sensitive for $tan\beta$ ~ 1
 - for **bbH/A** not sensitive enough:
 - dedicated analysis strategy needed (associated b are soft!)

Conclusions

- Main message:
 - shown some of the details of an ATLAS data analysis
 - highlighted challenges and opportunities of complicated final states

tt+bb is a perfect place where your preferred New Physics model can hide its signature

Backup

ttH(bb) analysis in ATLAS Profile Likelihood Fit - significance

Significance is given by the profile likelihood ratio:

$$\lambda(\mu) = \frac{\mathcal{L}(\mu, \hat{\theta}_{\mu})}{\mathcal{L}(\hat{\mu}, \hat{\theta})}$$

Maximize L for a given μ 'conditional' likelihood

Maximize L 'unconditional' likelihood

Where the test statistic is (example background-only):

$$q_0 = \left\{ \begin{array}{ll} -2ln\lambda(0) & \quad \hat{\mu} \geq 0 \\ 0 & \quad \hat{\mu} < 0 \end{array} \right. \quad \text{reject background-only}$$

From this we can build p-value and significance:

$$p_0 = \int_{q_{0,\text{obs}}}^{\infty} f(q_0|0) \, dq_0$$

$$Z_0 = \Phi^{-1}(1 - p_0)$$

ttH(bb) analysis in ATLAS Profile Likelihood Fit - limit setting

 When looking for a tiny signal on top of background, worry to exclude signal due to a downward fluctuation

Using CLs+b, one would expect to exclude the signal 5 % of the time

$$\mathrm{CL_s} = \mathrm{CL_{s+b}}/\mathrm{CL_b}$$

test signal hypothesis: only exclude if $CL_s < 5\%$

- So we use CL_s to test a signal hypothesis (not a probability)
 - a downward fluctuation in S+B will not exclude signal since CL_b with also be small
 - conservative approach

ttH(bb) analysis in ATLAS Profile Likelihood Fit - asymptotic regime

- In large statistics data samples, the distribution of the test statistic is known according to Wilks' Theorem (independently on the prior!)
 - as a result, one can directly calculate p-value and significance:

$$-2\log\lambda(\mu) = -2(\log L(\mu, \hat{\theta}) - \log L(\hat{\mu}, \hat{\theta})) = \left(\frac{\mu - \hat{\mu}}{\sigma_{\mu}}\right)^{2}$$

- ▶ distributed as a x2
- results in parabolic shape around the minimum
- This theorem holds true for even as few as ~ O(10) events in a data sample
- Saves from running very time consuming pseudo-experiments