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All observables in a one-dimensional quantum 
mechanical system with a bounded potential can be 
entirely computed from a single perturbative series

Main result:



It is known that perturbative expansions in QM and QFT 
are only asymptotic with zero radius of convergence

Most perturbative expansions are not Borel resummable 
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Introduction and Motivation

In special cases, like the anharmonic oscillator in QM and �4
2,3 QFT

it has been proved that perturbation theory is Borel resummable

and leads to the exact results (no non-perturbative contributions)

[Loeffel et al, 1969; Simon and Dicke, 1970; Eckmann, Magnen and 
Seneor, 1975; Magnen and Seneor, 1977]

Technically, this is due to the appearance of singularities of the Borel 
function along an integral needed to perform to get the answer
The singularity can be avoided by deforming the contour

but the result present an ambiguitiy of order exp(�a/�n
)

[Dyson, 1952]

If one is able to find a semi-classical instanton like configuration (and its whole 
series) leading to the same factors, one might hope to remove the ambiguity



Alternative geometric picture starts from path integral 

Perturbation theory is infinite dimensional generalization  of 
steepest-descent method to evaluate ordinary integrals
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Understanding which instantons contribute to a given observable amounts to 
understand which saddles of the action should be considered in the path integral 

[Witten, 2011]

We can hope to address this point using generalization to 
infinite dimensions of known mathematical methods.   

Key question:  

Under what conditions only one saddle point (trivial vacuum) 
contributes so that perturbation theory gives the full answer?

We answered this question in QM.  
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Lefschetz thimbles

Borel sums

Exact perturbation theory
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One dimensional integrals

Z(�) ⌘ 1p
�

Z 1

�1
dx g(x) e�f(x)/�

Convergent for any � � 0

We can compute the integral exactly using steepest-descent methods: 

1. Determine the saddle points contributing to Z 
2. Resum the “perturbative” expansion around each saddle

Consider first point 1.

Z(�) =
1p
�

Z

C
x

dz g(z) e�f(z)/�

Analytically continue in complex plane
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Saddle points z�: f 0(z�) = 0

F (z) ⌘ �f(z)/�

For each saddle we call downward and upward flows        and        the 
lines where Re F decrease and increase, respectively, and Im F is constant

J� K�

J� is the path of steepest descent. If it flows to Re F = �1
it is called a Lefschetz thimble (or just thimble).

By construction, the integral over a thimble is always  well defined and convergent.
If        hits another saddle point, the flow splits int two branches  

and ambiguity arises (Stokes line). 
J�

Picard-Lefschetz theory: deform the contour C
x

in a contour     : C

C =
X

�

J�n� n
�

= hC
x

,K
�

i

h. . .i denotes intersection pairings hJ�,K⌧ i = ��⌧
[Witten, 1001.2933]
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Z(�) =
X

�

n�Z�(�)

Z�(�) ⌘
1p
�

Z

J�

dz g(z) e�f(z)/�

Not all saddles contribute to the integral, only those with n� 6= 0

Example: i)

Three saddles:  

f(x) =
1

2
x

2 +
1

4
x

4
, g(x) = 1

z0 = 0, z± = ±i

J� = K⌧If                    intersection not well defined.  
Ambiguity resolved by assigning a small imaginary part to �

Degenerate situation. Give a small imaginary part to �



9

1

z0

z+

z≠

J0

K0

J+ K+

K≠ J≠

≠4 ≠2 0 2 4≠4

≠2

0

2

4

1

z0

z+

z≠
J0

K0

J+K+

K≠J≠

≠4 ≠2 0 2 4≠4

≠2

0

2

4
Im � > 0 Im � < 0

n0 = 1, n± = 0
Only saddle at the origin contributes to the integral.  

No need to deform the original contour of integration (thimble itself)
No “non-perturbative” contributions 
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Example: ii)
Three saddles:  Again degenerate situation.z0 = 0, z± = ±1

f(x) = �1

2
x

2 +
1

4
x

4
, g(x) = 1

1

z0
z+z≠

J0K0

J+

K+

K≠

J≠

≠4 ≠2 0 2 4≠4

≠2

0

2

4

1

z0
z+z≠

J0K0

J+

K+

K≠

J≠

≠4 ≠2 0 2 4≠4

≠2

0

2

4
Im � > 0 Im � < 0

C+ = J� � J0 + J+ C� = J� + J0 + J+

The integral is on a Stokes line and the intersection numbers depend on the 
deformation. Ending result of the integral will eventually be unambiguous 

There are “non-perturbative” contributions
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Borel Sums

Z�(�) ⌘
1p
�

Z

J�

dz g(z) e�f(z)/�

can be computed using a saddle-point expansion. Resulting series is asymptotic 

Z(�)�
NX

n=0

Zn�
n = O(�N+1) , as � ! 0

Borel transform to reconstruct function: assume Zn ⇠ n!annc

If no singularities for t>0 and under certain assumptions

ZB(�) = Z(�)

BbZ(t) =
1X

n=0

Zn

�(n+ b+ 1)
tn ZB(�) =

Z 1

0
dt e�ttbBbZ(t�)

(Borel Le Roy function)
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Analytic structure of Borel function close to the origin can be 
determined by the large-order behaviour of the series coefficients

Singularity dangerous or not depending on the sign of a: 

a>0 (same sign series) singularity for t>0 

😀a<0 (alternating  series) singularity for t < 0 

☹

Lateral Borel summation: move the contour off the real positive 
axis to avoid singularity for t>0.

Result is ambiguous and ambiguity signals presence of 
non-perturbative contributions to Z not captured by  ZB

Deformation to define the lateral Borel sum corresponds to 
the one we did to avoid Stokes line  

for Zn ⇠ n!an, B0Z(t) =
P

n(at)
n ⇠ 1

1�at
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Z�(�) ⌘
1p
�

Z

J�

dz g(z) e�f(z)/�
is Borel resummable to the exact result.

Proved by changing to variable t =
f(z)� f(z�)

�

Z(�) ⌘ 1p
�

Z 1

�1
dx g(x) e�f(x)/� =

X

�

n

�

Z

�

(�)

Each Z�(�) is Borel resummable to the exact result

1 saddle contributes: Z(�) reconstructable from perturbation theory

More saddles contribute: Z(�) given by multi-series

(non-perturbative corrections)

Summarizing
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Example first case: f(x) =
1

2
x

2 +
1

4
x

4

Zn =
p
2(�)n

�(2n+ 1
2 )

n!
B�1/2Z(t) =

s
1 +

p
1 + 4t

1 + 4t
Z 1

0
dt t�

1
2 e�tB�1/2Z(�t) =

1p
2�

e
1
8�K 1

4

⇣ 1

8�

⌘
Exact result

Example second case: f(x) = �1

2
x

2 +
1

4
x

4

Z±,n =
�
�
2n+ 1

2

�

n!
Coefficients at minima: Coefficients at maximum: iZ0,n

B�1/2Z±(�t) =

s
1 +

p
1� 4�t

2(1� 4�t)
For real � B�1/2Z not Borel resummable

Recall we need Im � 6= 0 to avoid Stokes line

Thimble decomposition tells us how to perform lateral Borel sums and sum contributions:

Z�(�)� Z0(�) + Z+(�)

Z�(�) + Z0(�) + Z+(�)

Im � > 0

Im � < 0
=

⇡p
4�

e
1
8�


I� 1

4

✓
1

8�

◆
+ I 1

4

✓
1

8�

◆�

Exact result
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Exact Perturbation Theory
When the decomposition in thimbles is non-trivial, the 

intersection numbers          have to be determinedn�

This is easy for one-dimensional integrals, but very complicated in 
the path integral case, where in general they will be infinite

Key idea: the thimble decomposition can be modified by a simple trick

The decomposition of the integral Z in terms of thimbles 
is governed by the function f(z) and not by g(z). Define

Ẑ(�,�0) ⌘
1p
�

Z 1

�1
dx e

�f̂(x)/�
ĝ(x,�0)

f̂(x) ⌘ f(x) + �f(x) , ĝ(x,�0) ⌘ g(x)e�f(x)/�0 lim
|x|!1

�f(x)

f(x)
= 0

By construction

Ẑ(�,�0 = �) = Z(�)
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Saddle-point expansion in � at fixed �0:

�f in

ˆf : “classical” deformation

�f in ĝ: “quantum” deformation”

Thimble decomposition is determined by f̂

By a proper choice of �f , we can generally trivialize the thimble decomposition

=) one real saddle and no need to deform the contour of integration

Series expansion of

ˆZ(�,�0) in � at fixed �0:

Exact Perturbation Theory (EPT)

Non-perturbative contributions of Z are all contained 
in the perturbative expansion of Ẑ
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f(x) = �1

2
x

2 +
1

4
x

4Consider again

�f(x) = x

2

ˆ

f(x) =

1

2

x

2
+

1

4

x

4
, ĝ(x,�0) = exp

⇣
� x

2

�0

⌘

and choose so that

Only saddle at origin contributes. We have

B�1/2Ẑ(�t,�0) =

s
1 +

p
1 + 4�t

1 + 4�t
e

p
1+4�t�1

�0

Z 1

0
dt t�

1
2 e�tB�1/2Ẑ(�t,�)

Exact result is now completely perturbative (one series only)

=
⇡p
4�

e
1
8�


I� 1

4

✓
1

8�

◆
+ I 1

4

✓
1

8�

◆�
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Consider quantum mechanics where divergencies are all reabsorbed by the 
path integral measure (UV limit not expected to be problematic)

Z(�) =

Z
Dx(⌧)G[x(⌧)]e�S[x(⌧)]/�

S[x] =

Z
d⌧


1

2
ẋ

2 + V (x)

�

V (x) analytic function of x

V (x) ! 1 for |x| ! 1
Discrete spectrum 

Path Integral 

These results can be generalized to higher-
dimensional integrals and then to path integrals 
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Remarks: 
1. Number of saddles depends on boundary conditions and infinite time limit  
2. Depending on the system, not all observables are Borel reconstructable 

If V admits only one minimum, the above subtleties do not arise. 

Like in the one-dimensional case, we can define an EPT as follows

V = V0 +�V

1. V0 has a single non-degenerate critical point (minimum);

2. lim|x|!1 �V/V0 = 0 .

Suppose                              such that 

Ẑ(�,�0) =

Z
Dx G[x] e

R
d⌧ �V
�0

e

�S0
�
, S0 ⌘

Z
d⌧


1

2
ẋ

2 + V0

�

Ẑ(�,�) = Z(�)

If the action S[x(⌧)] has only one real saddle point x0(⌧), the formal series

expansion of Z(�) around � = 0 is Borel resummable to the exact result.

Key result
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ˆZ is guaranteed to be Borel resummable to the exact answer

All observables in a quantum mechanical system 
with a bounded potential can be entirely computed 

from a single perturbative series (EPT)

We have then proved the statement made at the beginning:

(provided points 1. and 2. above apply)

No need of thimble decomposition and trans-series.

Even observables in systems known to have instanton corrections 
will be reconstructed by a single perturbative series

Time to show explicit results

We will denote by Standard Perturbation Theory (SPT) the usual 
perturbative computation (instantons included)

Large arbitrariness in the choice of EPT. In principle all choices equally 
good, although in numerical studies some choices better than others
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Examples

Numerical analysis to test our results. We compute N orders using package

Padé

Results are compared with other methods (such as 
Rayleigh-Ritz) to get exact answers in QM 

[Sulejmanpasic, Unsal, 1608.08256] 

At fixed order N of perturbative terms, we use           approximants 
for the Borel function, that is then numerically integrated.
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Symmetric double well

V =
�

2

✓
x

2 � 1

4�

◆2

Prototypical system where instanton occurs. Write

V0 =
⇣ 1

32�
+

�0

2
x

2 +
�

2
x

4
⌘
, �V = �

⇣
�0 +

1

2

⌘
x

2

2

Already at small coupling, EPT is able to resolve the 
instanton contribution to the ground state energy.

At � = �0 = 1/25, N = 200

�E0

E0
⇡ 10�8 �E1

E1
⇡ 4 · 10�14

Einst
0 ⇡ 2p

⇡�
e�

1
6� ⇡ 0.087
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At larger values of the coupling, instanton computation breaks down

EPT works better and better

No need of many perturbative terms.

With just 2 (using a conformal mapping method) at � = 1 we get

�E0

E0
' 3%

We have also computed higher energy states and eigenfunctions. 
In all cases EPT give excellent agreement with other methods. No 

signal of missing non-perturbative contributions.
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SUSY  double well

V (x;�) =
�

2

⇣
x

2 � 1

4�

⌘2
+

p
�x

E0 = 0 to all orders in SPT due to SUSY
Potential one obtains integrating out fermions in SUSY QM

E0 6= 0Yet, by instanton effects that dynamically break supersymmetry

We can approach this system in three ways:

[Jentschura, Zinn-Justin, hep- ph/0405279] 

2. Turn the quantum tilt into classical. Alternative perturbation theory (APT)

1. ordinary instanton methods, SPT

VAPT =
�

2

⇣
x

2 � 1

4�

⌘2
+

�0p
�

x

3. EPT V0 =
⇣ 1

32�
+

�0

2
x

2 +
�

2
x

4
⌘
, �V =

�0p
�

x�
⇣
�0 +

1

2

⌘
x

2

2
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k E(4)
k

�E(4)
k

/E(4)
k

E(6)
k

�E(6)
k

/E(6)
k

0 1.0603620904 3 · 10�45 0.5724012268 2 · 10�19

1 3.7996730298 2 · 10�44 2.1692993557 3 · 10�19

2 7.4556979379 9 · 10�37 4.5365422804 9 · 10�17

3 11.6447455113 4 · 10�36 7.4675848174 7 · 10�16

4 16.2618260188 4 · 10�36 10.8570827110 2 · 10�16

Table 2: Energy eigenvalues E(2`)
k and the corresponding accuracies �E(2`)

k /E(2`)
k of the first five levels

of the pure anharmonic x4 and x6 potentials, computed using EPT with N = 200. Only the first ten
digits after the comma are shown (no rounding on the last digit).

of the pure x4 and x6 oscillators computed comparing EPT to the results from RR methods.

We used N = 200 orders of perturbation theory and in eq.(4.19) we chose c1 = 2 for ` = 2 and

c1 = 4, c2 = 2 for ` = 3. Notice the accuracy of E(4)
0 up to 45 digits! At fixed N , similarly to the

RR method, the accuracy decreases as the energy level and the power ` in eq.(4.18) increase (in

contrast to the WKB method where the opposite occurs) All the energy eigenvalues reported

in table 2 are in agreement with those reported in table 1 of ref. [39], tables I and II of ref. [38]

and table 2 of ref. [29], in all cases computed with less precision digits than our results.14 The

accuracy of our results sensibly depend on the choice of the coe�cients c
j

in eq.(4.19). We have

not performed a systematic search of the optimal choice that minimizes the errors, so it is well

possible that at a fixed order N a higher accuracy than that reported in tab. 2 can be achieved.

5 Conclusions and Future Perspectives in QFT

In this paper we have studied one-dimensional QM systems with bounded potentials and discrete

spectra. When the potential admits only one extremum (minimum), we have shown that the

loopwise expansion in the euclidean path integral is Borel resummable and reproduces the full

answer. Several known results in the literature about the Borel summability of certain QM

systems, such as the quartic anharmonic oscillator [2, 3], are rederived and generalized in this

new perspective.

A properly defined perturbative expansion (EPT) allows us to extend the above result to po-

tentials admitting more than one extremum. Remarkably, EPT encodes all the non-perturbative

corrections of the ordinary (SPT) perturbative semi-classical expansion, providing the full an-

swer for any value of the coupling constant. In particular, EPT works at its best at strong

coupling, where the high accuracy obtained confirms its validity. All complications occurring in

SPT, related to the need of a resurgence analysis to make sense of otherwise ambiguous results,

or of a highly non-trivial Lefschetz thimble decomposition of the path integral, are bypassed

14Note however that the numerical computations based on the Rayleigh-Ritz methods remain superior for these
simple potentials.
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Pure anharmonic potentials:

H = p2 + x2l

Usual perturbation theory breaks down

26



Conclusions and future perspectives 

Is it possible to get the same results directly in  Minkowski space? 

We have introduced a new perturbation theory in quantum mechanics 
(EPT) that allows us to compute observables perturbatively

No need of trans-series and to worry for possibly ambiguous results 
(possible addressed by resurgence or by thimble decomposition)

Generalize to higher dimensional QM systems
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Is renormalization an issue?

Borel summability of          theories suggest a promising 
development in QFT and is the next thing to do 

What about QFT? 

A new approach to strongly coupled physics has begun …
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UV problem

Infinite volume limit, spontaneous symmetry breaking? IR problem

�4
2,3



Thank You
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