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Naturalness and the scale of New Physics

e When viewing the SM as an effective field theory, the Higgs mass is the observable
most sensitive to the New Physics scale
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A lower value follows in models with RG evolution over a large energy window.
For example, consider the MSSM with high-scale SUSY breaking:
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e Super-Soft natural models (e.g. SUSY) already constrained at LEP2
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e Super-Soft natural models (e.g. SUSY) already constrained at LEP2

A SJ mMp, Mz

fOI’ AUV

100 TeV and e =1

e Soft natural models are being probed now at the LHC
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e Super-Soft natural models (e.g. SUSY) already constrained at LEP2

A SJ mMp, Mz

fOI’ AUV

e Soft natural models are being probed now at the LHC

CMS rreiiminary 12.9 fb™ (13 TeV)
600| PP —>T1T1T1 — 1 5“(? NLO+NLL exclusion

=—Observed = 10
:-Expected £t 10

theory

experiment

400

300

200

II\\lIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIII
006" 200 300 400 500 600 700 800 900
mT[GeV]

1

10?

10

10~

95% C.L. upper limit on cross section [pb]

BR(T — Ht)

)

>
O
O 100-
& |
100 TeV and ¢ = 1 =]
30
60-
Oi ‘/‘”;””/‘H;i‘/‘ — T ]
60 80 100 120
| o M, (GeV/c?)
ATLAS
0.9 {s=8TeV, 20.3fb" Summary results: 900
0.8 Same-Sign di. B850
0.7 e 220 X 8800
0.6 Ht+X,Wb+X comb.

arXiv:1505.04306

0 01020304 0506070809 1
BR(T — Wb)

750
700
650
600
550
500

Observed 95% CL mass limit [GeV]

1= Both kind kind of theories are now confined into fine-tuned territory



The Twin Higgs paradigm:  Higgs mass saturated by new states
neutral under the SM gauge group

Naive difficulty: i) How to relate the coupling of the new states to y; ¢

i) Make sure that 2-loop QCD corrections do not spoil the cancellation
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i) Make sure that 2-loop QCD corrections do not spoil the cancellation

Twin Higgs idea: the SM sector related to a copy through a Z2 (Twin) parity

[ Chacko, Goh, Harnik, PRL 96 (2006) 231802 ]

SM sector Twin parity Twin sector

< >
SU(S)C X SU(Q)L X U(l)y /S\U/(B)C < E\U/(Q)L X ﬁ(l)y
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Structure of Twin Higgs Theories

E
A
m. &= Colored states } SM and Twin sec.fors e.xfended fo. a more.
1 fundamental Zs-invariant dynamics at this scale
gsmf -+ Twin states
gsmv —— SM states
Most general Z>-invariant potential: i) has SO(4) x SO(4) accidental invariance

ii) mass term has larger SO(8) invariance
5 _ A _ \ ~
V(H. ) = —m(H2 + | AR) + 2202+ |22 + j<|H%H|4> b

1= Consider scenarios where SO(8)-breaking terms are small,

and let’s analyze first the SO(8)-invariant limit
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In the unitary gauge:

SO(8) = SO(7) D SU(2), x U(1)y

7 Nambu-Goldstone bosons

—~—

- 3 NGB eaten to give mass to W
- Twin photon remains massless

- one massless SU(2) doublet H

H'H = f?sin*(h/f)
o (h* = H'H)
H'H = f%cos?(h/f)



V(9) = —mglel” + %\qﬁl‘* SO(8) = SO(7) > SU(2)1, x U(1)y

Q
1/

Cancellation in the mass
term (due to accidental
SO(8) from Z3 invariance)

[ Chacko, Goh, Harnik ]
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7 Nambu-Goldstone bosons

—~—

- 3 NGB eaten to give mass to W
- Twin photon remains massless

- one massless SU(2) doublet H

H'H = f?sin*(h/f)
o (h* = H'H)
H'H = f%cos?(h/f)

Ty

sin(h/f) cos®(h/ f)
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A similar cancellation occurs in the correction to the mass term from fermions:
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A similar cancellation occurs in the correction to the mass term from fermions:

LDy quHtr + §: qrHtr + h.c Yt = Yt
~ ~ O h2 e h
H H A A -
1 h
. 2 7
sin®(h/f) cos”(h/ f)
| E
: , 2 L2 2
Mass of twin states: My = 19 f A
Yt My == colored states
m; = —=
V2 Mg —— radial mode
M f radial mode: 2 =g Sm? ~
ass of radial mode:  my = Ay < m; gsuf — Wi
Massless twin photon can be removed by + H Wt

not gauging (7(1) (small Z2> breaking)



o Effect of the SO(8)-breaking terms
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A non-vanishing SO(8)-breaking quartic gives the NGB a potential:
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Then:
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Theories with m, ~ m, (Sub-Hypersoft)

Consider the case in which Mg ™~ Ty

Then:

gain in FT of Twin
Higgs theories

i — X —— X
Ah € 472 memy " 3yt € Y7 m?
5 log
i mgmyg
However
2 2
’ 379z o Am my, :
S )\h ~ * |:|'> m= ~ X no gain
472 * 3y €

1= To gain in FT, SO(8)-breaking terms must not be generated at O(gz,,)

This can be ensured through symmetries and selection rules of the UV
dynamics [ Barbieri, Greco, Rattazzi, Wulzer, JHEP 1508 (2015) 161 |
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Fine Tuning and scales of New Physics

e Higgs mass term saturated by color-less twin tops
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Fine Tuning and scales of New Physics

e Higgs mass term saturated by color-less twin tops
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mi ~y; 7~ = 5— X —~
t 3y; me €
log
mgmsy

e Hierarchy between colored and twin states controlled by g,

472 1 m? 2
mz ~ 342 - X ?h X 5_752 =)  FT minimized for maximal g.
log - (i.e. when UV dynamics strongly coupled)
mgmy

Composite Twin Higgs models emerge as
natural candidates

I Q: How large g, can be ¢



Estimating the strong coupling scale through the scattering of NGBs

(low-energy viewpoint)

T N / e
\\ // o
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Ve ~ f
b // \\ d
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TXT7T=1+4 21+ 27
. o . . 1 N— 2 S
Decomposing into partial wave amplitudes: aj—0 = 35— 73
T
Imposing an upper bound on the scattering phase: |5\ < 5

N =8
m*é\/gé i ~ 5
f = VN =2
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Estimating the strong coupling scale through the scattering of NGBs
(low-energy viewpoint)
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N 7 a_b c__d\ __ ab ced ac ¢bd ad ¢be
AT A(m%m —>7T7T)—F(55 —|—F55 +F55
b L7 ~
T '/ N ﬂ.d
7Tx7T=1+421+427
. o . . 1 N — 2 S
Decomposing into partial wave amplitudes: Aj—o = 55 72 for SO(N)/SO(N —1)
Imposing an upper bound on the scattering phase: 0] < g
N=8
My _ /S 4 l large size of multiplets lowers strong
f f vN —2 scale compared to naive expectation

13



Estimating the strong coupling scale through the scattering of NGBs
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T ~ L m°
RN 7 S t (7
N 7 a_b c__d\ __ ab ced ac ¢bd ad ¢be
AT A(m%m —>7T7T)—F(55 —|—F(55 +F55
b L7 ~ J
T '/ ~ T
7Tx7T=1+421+427
. o . . 1 N — 2 S
Decomposing into partial wave amplitudes: Aj—o = 55 72 for SO(N)/SO(N —1)
Imposing an upper bound on the scattering phase: 0] < g
N=8
My _ /S 4 l large size of multiplets lowers strong
f f vN —2 scale compared to naive expectation
G+« 1 1 ge SO 0.1
my ~ 0.45TeV X X XA[— . > my < (3 —4) TeV x 4/ —
Yt m2 € * o~ €
log —=
memy

13 ... Just beyond the LHC reach



EW and Higgs precision physics
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EW and Higgs precision physics

Ratio of colored/twins obtained through a large g. at fixed f

----» effects scaling with f do not decouple

e Higgs couplings

dc

_N\J
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same constraint as for CH models
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EW and Higgs precision physics

Ratio of colored/twins obtained through a large g. at fixed f

----» effects scaling with f do not decouple

: . oc
e Higgs couplings — ~
c

e EW precision observables

IR contribution from
Higgs compositeness is
a non-decoupling one

2 2

v v
> E=—<0.1-0.2
f2 f2
same constraint as for CH models
from arXiv:1306.4655
2 ]
(L ]
X L
< “ r
0 .
0 ]

E

A

= M.=gsf
g«

| m=gsmf
v
J

—— M=gsmv

Fermion contribution

AT\I,N Syt2 yt%2

1672 m?2

is a decoupling one



EW and Higgs precision physics

E
A
Ratio of colored/twins obtained through a large gx« at fixed f =+ m,=g,f
----» effects scaling with f do not decouple Y I
| m=gsuf
7]
2 2 f
e Higgs couplings oc ~ 2 - E= v_2 <0.1-0.2 —+ M=gsmv
c  f? /

same constraint as for CH models

e EW precision observables from arXiv:1306.4655

] Fermion contribution
? . 3Byp yiv?
IR contribution from ’ * ATy ~ 5
o 1 1 16m= ms=
Higgs compositeness is = ,
. X - . .
a non-decoupling one w0 7 is a decoupling one

] Can EWPT be satisfied in
] Composite TH theories ¢
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Phenomenology of an SO(8) Twin Higgs model

[ R.C., D. Greco, R. Mahbubani, R. Rattazzi and R. Torre arXiv:1702.00797]

-----------------------------------------

Standard Model

’\/\/\/\/\/\/ Composite Sector
SU(S)CXSU(Q)LXU(l)Y :

f

7 NG bosons

B Twinffctor J’\/VV\/\/\/
SU(?))CXSU(2)L

-----------------------------------------

Loniz =g Wiud" +9'BuJ s + G Wy J* Th = T + T
+yr GOy + YrtrRO: + 1 1,04 + JrtrO; + h.c.

JH, — pt = 28 of SO(8)
Partial compositeness: J — ph =1 of SO(8)

~

Out,Opy — U, T = 8 of SO(8)

Low, Tesi, Wang, Phys.Rev. D91 (2015) 095012
Barbieri, Greco, Rattazzi, Wulzer, JHEP 1508 (2015) 161
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Higgs potential at NLO

e Higgs potential generated at the scale m, by 1-loop threshold corrections

392g/2
oVp = 51’; 5 fEsin®(h/f) ( from Z3 breaking)
s
ch4 4 ~4 75 . 4 4 T .
Vg = 282 (yLFl + 7, Fl) (sin*(h/f) + cos*(h/f)) ( £71, F1 are O(1) functions )
s
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e Higgs potential generated at the scale m, by 1-loop threshold corrections

392g/2
oVp = 51’; 5 fEsin®(h/f) ( from Z3 breaking)
s
ch4 4 ~4 75 . 4 4 T .
Vg = 282 (yLFl + 7, Fl) (sin*(h/f) + cos*(h/f)) ( £71, F1 are O(1) functions )
s

By making the field redefinition H — H' = f sin(VHTH/ f)

H
VHTH

one gets the effective Lagrangian (go=9>=94=vy1, ¢a=¢4=0):

1

_ 2
£H—‘D/JJH| ‘|‘ﬁ

0,(HTH))* + *H'H — M\, (HTH)?

L:=—y1qr,Htr + h.c.

f (. 9H'H g,(H'H) - = __( H'H & (H'H)?
— = - )+ tipt -
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RG evolution from m. down to p© ~ mp, ms encodes the bulk of radiative corrections:

GF1/2 \/5 GE h( )( f) § f2
1 9 4 5
1 3 9 _ 3 e S

Br = 153 (Gy%h = Y1 Q0¥ + gUalio — 39t + gyé‘i&x)

\\l’

joloNG
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RG evolution from m. down to p© ~ mp, ms encodes the bulk of radiative corrections:

ey G = a1 - (=%
1 9 4 5
1 3 9. 3 - a2 3 _4-

B, = 1672 <6y%)\h — Zyil — gySyS + 8?/49() — 3y2y862 + gyécz;)

\\l’

Twin top operators
up to D=7 contribute
and must be included
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RG equations are solved at Next-to-Leading order in a combined

perturbative expansion in (alog)and &
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IR contribution almost accounts

for the whole Higgs mass,
UV threshold are sub-dominant

Ex: for m, = 5TeV and £=0.1

IR= T4% (47% SM + 27% twin tops)
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EW and Higgs precision physics

e 1-loop contributions to EWPO from Twin states are subleading

e Corrections parametrically the same as in CH models (with singlet ¢R)

2 2.2 2 2.2 2 2 2
= Yr, yrv Yt yrv Mg 391 m
WV gma e pz TR g N 108 — gy stloe o
2 2 .2 2 2 .2 2
5 Y7U i YL,v Mg
Sar, = N b brp—2t N log —¥
ILb = Jemz Vo Nz UV T VIR gz ez 08 T2
ayv,arr,buv,brr

coefficients of O(1)

For recent analyses of EWPT in CH models see: C. Grojean, O. Matsedonskyi and G. Panico, JHEP 10 (2013) 160
R. Contino and M. Salvarezza, JHEP 07 (2015) 065

D. Ghosh, M. Salvarezza and F. Senia, NPB 914 (2017) 346
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EW and Higgs precision physics

1-loop contributions to EWPO from Twin states are subleading

Corrections parametrically the same as in CH models (with singlet ¢R)

' 2 ----- 2 2
A g g My
AS = = 1
22t ot
. L, yrv- Y yrv My _ 391 T
AT — C : = 1 B 1
""""" 2 22 2 2,,2 2
YL yrv Jt yLY My
R T T U TP R TR
-------------------------------------- CLUV,CLIRybUV7bIR
: coefficients of O(1)

UV threshold corrections

For recent analyses of EWPT in CH models see: C. Grojean, O. Matsedonskyi and G. Panico, JHEP 10 (2013) 160
R. Contino and M. Salvarezza, JHEP 07 (2015) 065

D. Ghosh, M. Salvarezza and F. Senia, NPB 914 (2017) 346
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EW and Higgs precision physics

1-loop contributions to EWPO from Twin states are subleading

Corrections parametrically the same as in CH models (with singlet ¢R)

ST T S -
5 g g m
AS = = 1
202" T 102,28 0852
PN > 2.2 5 o > 5
= JL yLvo Yt yLv Mg 391 m,
AT =avv gy tarqgaNeymlog g =5 5elog o
AP 5.0 Vi 9 9.9 - 5
YL A YLV Yi N YLV Mg
) = N, b b N, log —=
ILb = Jemz Vo Mz UV T VIR gz ez 08 2
Y ayv,arr,byv,brr
A P coefficients of O(1)

UV threshold corrections

IR running down to EW scale

For recent analyses of EWPT in CH models see: C. Grojean, O. Matsedonskyi and G. Panico, JHEP 10 (2013) 160
R. Contino and M. Salvarezza, JHEP 07 (2015) 065

D. Ghosh, M. Salvarezza and F. Senia, NPB 914 (2017) 346



o Large & possible for My < 4 TeV and signs of AT, dgr, anti-correlated
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o Large & possible for My < 4 TeV and signs of AT, dgr, anti-correlated

0.00|

F1=03, my=2m,="2my

Non-perturbative region
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10000

LDaY(p, — E )T + c¥Ud, "V

a,c= 0(1)



o Large & possible for My < 4 TeV and signs of AT, dgr, anti-correlated

F1=03, my=2m,="2my

Non-perturbative region

0.00|

2000 4000 6000 8000 10000

Moral: once the perturbative bound is
satisfied, EWPT can be passed in a
sizable portion of the parameter space

20

LDaY(p, — E )T + c¥Ud, "V

a,c= 0(1)



Conclusions
B

21



Conclusions
B

= Twin Higgs models interesting example of Neutral Naturalness

21



21

Conclusions

Twin Higgs models interesting example of Neutral Naturalness

Gap colored /twins (hence FT) controlled by strength of underlying UV dynamics
Maximal FT gain for strongly coupled UV dynamics



21

Conclusions

Twin Higgs models interesting example of Neutral Naturalness
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Conclusions

Twin Higgs models interesting example of Neutral Naturalness

Gap colored /twins (hence FT) controlled by strength of underlying UV dynamics
Maximal FT gain for strongly coupled UV dynamics

L, parity alone not sufficient to guarantee gain in FT: one needs accidental

SO(8) at O(gsm)?

Condition on symmetries/selection rules of UV dynamics is required

Ex: SO(8)/SO(7) works, SU(4)/SU(3) does not

Perturbativity bound on g, made stringent by large multiplicity of states required

for realistic models. Naive estimates give: m./f <3 —5

This bound to be compared with m,/f < 1.5 in CH models from Higgs mass
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Conclusions

Phenomenology of an SO(8)/SO(7) model analyzed:

- Higgs mass almost entirely accounted for by RG evolution
from m, to my, , UV threshold correction sub-dominant

Higgs mass parametrically smaller than in CH models,

experimental value easier to reproduce

- Naively, larger My in tension with EWPT (because of too small AT\IJ)

In practice, £~0.2 still allowed (though borderline) for My <4 TeV



- Extra slides
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On the size of SO(8)-breaking quartic term

%% W
2 2 9
m, 99*< 4 ~4
+ ~ X H"‘H)
1672 m? H| |
71O -~ 2TINS -
;N N H Hs , \ ~H
H H H H
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On the size of SO(8)-breaking quartic term

W %%
2 2 .2
m* gg*< 4 114
+ ~ X H ‘|‘H)
NN AN
;N N H Hs , \ ~H
H H H H

Symmetries and selection rules of the UV dynamics

can forbid the SO(8)-breaking terms at O(gz,,)
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e Whether or not SO(8)-breaking terms are generated at O(g3,,) can be
determined solely based on symmetries and spurion quantum numbers

[ Barbieri, Greco, Rattazzi, Wulzer, JHEP 1508 (2015) 161 ]
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e Whether or not SO(8)-breaking terms are generated at O(g3,,) can be
determined solely based on symmetries and spurion quantum numbers

[ Barbieri, Greco, Rattazzi, Wulzer, JHEP 1508 (2015) 161 ]

For example, consider the case: - SO(8)-invariant UV dynamics
- coset SO(8)/SO(7)

- gauge contribution to the potential

spurion fransforms as 28 =21 +7 of SO(7) G* =U" (m)gTU(m)
21 x21 D1
J—» 1 non-trivial invariant
Tx7DO1
X 2 N : .
(Te[T36%) " + (Te[T)G™))* = g7 sin(h/f) + 57 cos*(h/ ) v
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e Whether or not SO(8)-breaking terms are generated at O(g3,,) can be
determined solely based on symmetries and spurion quantum numbers

[ Barbieri, Greco, Rattazzi, Wulzer, JHEP 1508 (2015) 161 ]

For example, consider the case: - SU(4)-invariant UV dynamics
- coset SU(4) /SU(3)

- gauge contribution to the potential

spurion transforms as 15 = 8 + (3 + 3) + 1 of SU(3) Ge =Ul (m)gT U ()
8x8DO1

3+3)x(83+3)D1 }—> 2 non-trivial invariants

1x1=1

(TI‘[T(%@Q&])Q + (Te[75,59%)" = ¢° (3sin®(h/ ) —sin (h/ ) + 5 (3 cos’ (h/ f) — cos* (h/ f))

(17 G°1) + (T8 G1)* = 0 s (/1) + 3 cos* (/)
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Consider the case in which m?p ~ loop X mZ

Examples:

Then:

A\ 1 [ 3y? S
miw—h— yt+ ® m?
2)\¢€

Hypersoft Theories

2

1) Theories where ¢ itself is a pPNGB

2) SUSY with soft masses M, generated at a scale ~ 1M, where ¢ is massless

*

472 1672
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Hypersoft Theories

Consider the case in which m?b ~ loop x m?

Examples: 1) Theories where ¢ itself is a pNGB

2) SUSY with soft masses M, generated at a scale ~ 1M, where ¢ is massless

Then:

A\, 1 [ 3y? SA SA
2 h Yt ¢ 2 h 2 . .
mp, ~ 2 . (47T2 + 1671‘2) my —= 3972 m, |:> My~ 4TV as in Technicolor

for \g > 17

as naturally expected if
SO(8)-preserving > SO(8)-breaking



Super-Hypersoft Theories

Variant of the Hypersoft case where leading correction to m comes from the top quark:

Example:  Approximate SUSY in the scalar sector below m,

gain in FT
Mo 1 (3y? 5N 5 472 mi i g2
~ X — X
M 2y € (4%2 +){67T2 M => M Y7 e Ah
9+ 1
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