ROQT4J / SPARK-ROQOT: ROOT 1/0 for JVM and
Applications for Apache Spark

V. Khristenko' J. Pivarski 2

"Department of Physics
The University of lowa

2Princeton University - DIANA

ROOT I/0 Workshop, 2017

Khristenko et al. ROQT4J / SPARK-ROOT

Outline

o Introduction

e Functionality

© Examples

Khristenko et al. ROQT4J / SPARK-ROOT

Introduction

Motivation

@ Enable access to Physics Data from SPARK.

@ ROOQT Data Format is, almost, self-descriptive -> JVM-based 1/O is
therefore a realistic goal!

@ Open up ROOQT for the use with Big Data Platforms (Spark is just a
single example)

Khristenko et al. ROQT4J / SPARK-ROOT

Introduction

What SPARK-ROQT is

The primary objective of this work is to provide a JVM-based access to
ROOT’s binary format

@ SPARK-ROOT is a ROQOT’s /O Library for JVM.
@ SPARK-ROOT is purely Java/Scala based.

@ SPARK-ROOT implements a new Spark Data Source, similar to Parquet,
Avro.

TTree as Spark Dataframe

SPARK-ROOT allows to access binary ROOT format within JVM directly and
represent ROOT TTree as Spark’s Dataset/Dataframe/RDD.

Khristenko et al. ROOQT4J / SPARK-ROOT

Functionality

Supported Datatypes

*

Basic Types: Integer, Boolean, Float, Double, Long, Char, Char
Fixed-size Arrays and variable sized arrays

Multidimensional Arrays

Pointers to basic Types - a la dynamic arrays

Structs (in multi-leaf style)

STL Collections (for now, map/vector) of basic types

Nested STL Collections of basic types

STL String

Composite Classes of Basic Types and of Composite Classes
STL Collections of Composite Classes

STL Collections of Composite with STL Collections of Composite as
class members - multi-level hierarchy

@ TClonesArray, when member class is available before Read-Time!

Khristenko et al. ROOQT4J / SPARK-ROOT

Functionality

Supported Functionality

JIT compilation using TStreamerinfo to get to TTree

Automatic Spark Schema Inferral for supported types in the TTree.
Proper Branch Flattening

Hadoop DFS Support

Early Stage Filtering

Khristenko et al. ROQT4J / SPARK-ROOT

Functionality

Limitations

Run/Read-Time Limitations of Spark

Spark builds a schema before the actual reading is done. It imposes
constraints that all the data types must be known a priori to reading! Not the
case for ROOT!

class Base {...};

class Derivedl : public Base {...};

class Derived2 : public Base {...};
std::vector<Base*> — at read/run-time can be

1) std::vector<Derivedl>
2) std::vector<Derived2>
3) std::vector<Base>

Same idea applies to TClonesArray.

Khristenko et al. ROQT4J / SPARK-ROOT

Functionality

Maven Central

Maven Central!

We are on Maven Central - include spark-root as package dependency -> no
need to compile yourself!

./spark-shell --packages
org.diana-hep:spark-root_2.11:0.1.7

import org.dianahep.sparkroot._
scala> val df = spark.sglContext.read.root (

"file:/Users/vk/software/Analysis/files/test/
ntuple_drellyan_test.root")

Khristenko et al. ROQT4J / SPARK-ROOT

Functionality

Intel Lab Cluster

approx. 20 machines

approx. 16 physical cores each

Public Dataset is being copied - 1.2TB soon available
Suggestions for Benchmark Tests

My current plan is: a set of basic queries on RDD/Dataframe(count,
map, flatMap, groupBYy, etc...., aggregate with histogrammar) over Muon
objects...

@ Mycurrent plan is: execution of these queries must be measured by
varying the level of parallelism.

@ If there are suggestions - please let me know!!!

Khristenko et al. ROQT4J / SPARK-ROOT

Functionality

Basic Performance

@ CMS Public Dataset for
benchmarks ;

@ Spark’s Listeners to collect
performance information.

@ Preliminary Results for 1.2TB
(>1K files) for df.count !

Query: dfcount vs #Executors for 1.1T8

g 1 5 E:

Khristenko et al. ROQT4J / SPARK-ROOT

Functionality

Github and Useful Links

spark-root

spark-root Scala User Guide

HowTo for analytix

Jupyter python-based notebook for processing 1.2TB of public dataset
root4j

More User Guides are to come soon!

Khristenko et al. ROQT4J / SPARK-ROOT

https://github.com/diana-hep/spark-root
https://github.com/diana-hep/spark-root/blob/master/UserGuideScala.md
https://github.com/diana-hep/spark-root/blob/master/UserGuideSetupAnalytix.md
https://github.com/diana-hep/spark-root/blob/master/ipynb/publicCMSMuonia_exampleAnalysis.ipynb
https://github.com/diana-hep/root4j

Examples

Summary

Huge Huge Thanks to Philippe, Danilo, Axel, Sergey Linev for replying to
my questions!

@ rootdj/spark-root - JVM-based ROOT I/O library. It Works!
@ spark-root allows one to view TTree as Spark Dataframe

@ spark-root 0.1.7 is available on Maven Central for use
@ Limitations do exist, but resolveable!

Khristenko et al. ROQT4J / SPARK-ROOT

Examples

What's next?!
o
o
o
o
[+
()]
(]
(]

Khristenko et al. ROQT4J / SPARK-ROOT

There is no I/0O Optimization implemented yet

HDFS Locality - right now only HDFS access is done.

Tuning Partitioning/Splitting - currently it’s file-based

Name Aliasing - useful for physicists

Cross-references, a la TRef???

Overcome the limitations

In principle, root4j should be rewritten from scratch

Prepare a decent TestBed - given Scala has a superb support for that!

	Introduction
	Functionality
	Examples

