FCC-hh Physics Analysis Meetings

Heather Gray, Filip Moortgat

Introduction

- The Conceptual Design Report (CDR) needs to written over the next year as input for the European Strategy Meeting
- Plan to evaluate the baseline FCC-hh detector's performance, using a set of physics benchmarks (see back up for details)
- To facilitate analysis progress, we'll hold short meetings once month from 4-6 pm on Tuesday
 - Please send us an email if you'd like to report progress however incremental
- Foresee summary reports in the hadron detector meeting as the analyses mature
- Goal is to use the FCC software and the baseline Delphes card described here
- For certain benchmarks, these studies may be complemented by full simulation studies of selected aspects
 - To be discussed!

Technical details

- Software setup and analysis tutorial
 - PDF: NNPDF30_nlo_as_0118 (Suitable for both LO and NLO)
 - Contact Michele if you run into any problems
- Clement and Michele have produced a set of signal and background samples
 - HH, ttH, ZH: 10M
 - tt-W-Z-QCD + 0/1/2j : 10M
 - QCD + 0/1/2j : Coming soon
- The LHE and FCCSW files can be accessed here:
 - /eos/fcc/hh/generation/mg5_amcatnlo/lhe
 - /eos/fcc/hh/generation/DelphesEvents
- The software is now working on the batch system, so there is the possibility to produce samples on demand
- Webpage detailing the available samples

Back up: Benchmarks

Higgs Benchmarks 1

- Higgs Self-Coupling (b-tagging, jet mass resolution)
 - bbγγ (photon resolution, photon p_T and η acceptance)
 - Michele Selvaggi, Weiming Yao?
 - bb+ττ (τ-tagging)
 - bb+ZZ,bb+WW (lepton p_T and η acceptance, efficiency, resolution)
 - Paolo Giacomelli, Silvie Brabant, Nicola de Filippis, Biagio di Micco
 - bbbb
 - Clement Helsens, Peter Riley
- Top-Yukawa Coupling
 - $ttH/ttZ: H \rightarrow \gamma \gamma$
 - boosted ttH (substructure, b-tagging) H→bb
 - Clement Helsens
 - Study to do: compare H→γγ and H→bb to understand the interplay between boost and backgrounds

(key performance aspect)
no manpower

Higgs Benchmarks 2

Rare Higgs Decays

- H→cc (charm tagging)
 - Andy Chisholm, Heather Gray?
- H→µµ (dimuon mass resolution)
 - Sinead Farrington?
- H→ργ, etc
- VBF+VBS
 - WW scattering
 - Andre Sznajder+student?, Pietro Govoni?
 - VBF H→ γγ (forward coverage and performance)
 - Istanbul? (Sehban Kartal et al)
 - VBF H→WW (forward jet coverage and performance)
 - Pietro Govoni+Lucrezia Bruni

Higgs Benchmarks 3

Precision SM Higgs Couplings

- H $\rightarrow \gamma \gamma$ (photon resolution, photon p_T and η acceptance)
 - Marco Delmastro ?
- H→WW (lepton p_T and η acceptance, efficiency, resolution)
 - Biagio di Micco?
- $H \rightarrow ZZ \rightarrow 4I$
 - Michele Selvaggi, Paolo Giacomelli?, Silvie Brabant?
- H→bb (b-tagging, jet mass resolution)
 - Paolo Francavilla? Heather Gray (Arturo Rodriguez)?
- H→ττ (τ-tagging)
 - Sinead Farrington?

BSM Higgs Bosons

- High Mass neutral (500 GeV, 1 TeV, 2 TeV): ττ , bb, mumu (τ-tagging, b-tagging)
- High Mass charged (500 GeV, 1 TeV, 2 TeV): τν, tb (b-tagging, MET, τ-tagging)
 - · Iklay Cakir, Orhan Cakir

Need to explore
the different
analysis
techniques that
will be needed at
100 TeV
compared to the
LHC

SM and Top Benchmarks

- Would also like to add a few key SM and top benchmarks to the list
- Some preliminary ideas
 - W → τν BR
 - Top
 - s-channel single top production at high p_T
 - FCNC coupling
 - Abdulkadir Senol, Haluk Denizli
 - Drell-Yan at high mass

BSM Benchmarks I

- Basic SUSY Benchmarks (MET resolution)
 - Squarks & Gluinos
 - Mgluino=12 TeV, MLSP = 100 GeV (max mass reach)
 - M_{gluino}=8 TeV, MLSP = 7.8 TeV (compressed)
 - Mike Hance
 - Stops
 - M_{stop}=9 TeV, MLSP = 100 GeV (max mass reach)
 - M_{stop}=5 TeV, MLSP = 4.8 TeV (compressed)
 - Owen Colegrove , Alan Barr?
 - Electroweakinos
 - 3&4-leptons + MET
 - soft 1 or 2 lepton(s) + MET (for wino/higgsino LSP scenarios) (low p_T muon ID)
- Exotic long-lived particles
 - Disappearing tracks; Displaced vertices

Need full simulation

BSM Benchmarks 2

Dark Matter

- monojet + MET
 - Phil Harris
- VBF jets + MET
 - Summer student?
- Disappearing tracks
- Heavy Resonances + Non-resonant?
 - Z'→tt: 5, 30 TeV (b-tagging, substructure)
 - Koji Terashi, Suat Ozkorucuklu? Sergei Chekanov?
 - Z'→μμ, ee: 5, 30 TeV (high p_T e/μ resolution)
 - Nate Avish
 - Z'→jj, bb: 5, 30 TeV (high p_T di-jet mass resolution, b-tagging)
 - Caterina Doglioni + summer student, Andrea Coccaro
 - Z'→ττ: 5, 30 TeV (τ-tagging)
 - Sinead Farrington?

Studies intended to characterise detector performance rather than these specific physics models

Conclusion and Timeline

- Identified a set of key benchmarks for the FCC-hh machine
- Work has already started on many of them but we now need a focussed effort to get them in place for the CDR
 - Three/four CERN summer student proposals are being submitted
 - Excellent short term projects for students
 - Need at least 5 additional people to cover critical channels
- Plan to review progress at monthly meetings
 - FCC week as goal to have first studies in all critical channels
- Please get in contact with us if you're working on something not yet on the list or would like to help with any of the uncovered items
 - There's room for more people on essentially every topic