HH→bbyy Status Report

> Michele Selvaggi CERN

FCChh Physics Meeting - 21/02/2016 - CERN

Strategy

- extract signal strength $\mu = \sigma/\sigma_{SM}$
- derive sensitivity on the self-coupling

- dependence on λ is different in for σ_{fid} and σ_{inc}
- need to study the dependence in fiducial region

Context

- Detailed study performed already in 2016
 - results obtained with Contino, Panico, Papaefstathiou, Son are summarised in the 100 TeV report
 - cut-based analysis using statistical uncertainty (no systematics)
 - reported sensitivity on λ after 30 ab⁻¹ at 100 TeV

	$\Delta_S = 0.00$	$\Delta_S = 0.01$	$\Delta_S = 0.015$	$\Delta_S = 0.02$	$\Delta_S = 0.025$
$r_B = 0.5$	2.7%	3.4%	4.1%	4.9%	5.8%
$r_B = 1.0$	3.4%	3.9%	4.6%	5.3%	6.1%
$r_B = 1.5$	3.9%	4.4%	5.0%	5.7%	6.4%
$r_B = 2.0$	4.4%	4.8%	5.4%	6.0%	6.8%
$r_B = 3.0$	5.2%	5.6%	6.0%	6.6%	7.3%

• Perform the analysis:

- with latest detector description (4T vs 6T)
 - better in terms of jet energy resolution
- shape analysis instead of cut-based
- include discussion on systematics

Samples

Pythia8 shower default for FCC-hh studies

- Py6 tune as default is off already at LHC, plus no vacuum γsplitting
- Signal
 - LO MG5, rescaled to NNLO/NNLL calculation using a global K-factor (from 100 TeV report)

Backgrounds

- All generated with MG5, ~ 10 M events/process
- 4 flavor generation (as in report analysis):
 - · ttH, bbH, jjγγ, <mark>bbjγ</mark>
 - bbyy, bjyy + 0/1 jets merged
- 5 flavor + 0/1 jets merged
 - · **jjjy**, jjyy

fake rate: $p_{j \to \gamma} = \alpha \exp(-p_{T,j}/\beta)$

Parton level observables

very similar plots for photons

Pre-Selection

After Pre-Selection cuts

Cut and count analysis

Further apply:

 $m_{bb} \in [100, 150] \text{ GeV}$

$$|m_{\gamma\gamma} - m_h| < 2.0, 2.5, 4.5 \text{ GeV}$$

Process	Acceptance cuts [fb]	Final selection [fb]	Events ($L = 30 \text{ ab}^{-1}$)
$h(bar{b})h(\gamma\gamma)$ (SM)	0.73	0.40	12061
$bbj\gamma$	132	0.467	13996
$jj\gamma\gamma$	30.1	0.164	4909
$t ar{t} h(\gamma \gamma)$	1.85	0.163	4883
$bar{b}\gamma\gamma$	47.6	0.098	2947
$b ar{b} h(\gamma \gamma)$	0.098	$7.6 imes10^{-3}$	227
$bj\gamma\gamma$	3.14	$5.2 imes 10^{-3}$	155
Total background	212	1.30	27118

Old

HH : 0.848 +/- 0.012 ttH : 6.424 +/- 0.146	New	HH : 12300.903 +/- 254.507 ttH : 14213.855 +/- 1188.622
jjaa : 86.149 +/– 0.542 jjja : 184.513 +/– 2.431	← 5f →	jjaa : 45334.416 +/- 2153.903 jjja : 22810.698 +/- 4376.07
jjaa : 77.374 +/- 1.829 bbja : 187.706 +/- 0.794 bbaa : 39.57 +/- 0.153 bjaa : 11.826 +/- 0.141	← 4f →	jjaa : 14272.417 +/- 4303.296 bbja : 16697.744 +/- 1214.665 bbaa : 7078.155 +/- 354.351 bjaa : 1873.356 +/- 307.978

Cut and Count

Disclaimer: very preliminary!!

- Signal yield looks compatible
- Background ~ x2 larger overall

• (Statistical) Precision:

- Report: $\Delta \mu / \mu = 1.6\% (\Delta \lambda / \lambda = 3.4\%)$
- Here: $\Delta \mu / \mu = 2.1\% (\Delta \lambda / \lambda = 4.2\%)$

NO SYSTEMATICS !!

Possible improvements

Optimize event selection

- $\Delta R < 2$ (although probably very correlated with p_T^{pair})
- build categories based on jet multiplicities (non b-jet veto)

• Perform a shape analysis:

- do not throw away precious events
- exploit correlations, ex: $m_{\gamma\gamma}$ vs m_{bb}

2D binned shape analysis

- Just a preliminary test, no systematics:
 - 2D binned max likelihood fit
 - $\Delta \mu / \mu = 1.6\% (\Delta \lambda / \lambda = 3.4\%)$
- Can be improved by:
 - background smoothening (now stat. limited despite several M events generated)
 - eventually parametric shape analysis

NO SYSTEMATICS !!

Systematics

• Dominant systematics are:

- Luminosity (2-3%), affects mainly signal
- Theory (finite top mass, PDFs), also mainly signal (5%)
 - eventually will go down to % level
- Photon Energy Resolution, Energy Scale (shape 1 %)
 - affects both normalization (trigger, photonID) and shape
- Jet Energy Scale (2%) / Resolution (5%)
 - impact both on event yield and shapes (TBS)
- B-tagging efficiency (To be Studied) (2-3%)
 - normalization

Conclusion

- Cross-check of the HH→bbyy analysis @ 100
 TeV has been performed
- Small differences have been observed but overall comparable sensitivity on the extraction of Higgs self coupling can be achieved
- Several ways to improve can be explored
- Understand how systematics impact sensitivity

Backup

jjaa_01j_5f

15

jjja_01j_5f

