Interpolating Quantum Electrodynamics

Chueng-Ryong Ji
North Carolina State University

LIGHT CONE 2017
 Frontiers in Light Front Hadron Physics :
 Theory and Experiment

In collaboration with Z. Li, B. Ma and A. Suzuki
Mumbai, September 18, 2017

Outline

- Motivation for Interpolation between IFD and LFD
- Time Surface
- Physical Meaning of Stability Group
- Interpolation of Dirac's Proposition
- Landscape between IFD and LFD
- Clarification on IMF and LFD
- LF Zero-mode (LFZM)
- Link between Coulomb gauge and LF gauge
- Jacob\&Wick helicity vs. LF helicity
- Fermion propagator
- Conclusion and Outlook

How many generators leave the time surface invariant?

Energy-Momentum Dispersion Relations
$p^{0}=\sqrt{\vec{p}^{2}+m^{2}}$

Physical Meaning of Stability Group

(a)

(b)

Equal-time
Wavefunction

Time-ordered
Scattering Amplitudes
Invariant under Stability Group Elements Kinematic Transformations

Dirac' s Proposition

Can they be linked?

The front form

Traditional approach evolved from NR dynamics

Close contact with
Euclidean space
T-dept QFT, LQCD, IMF, etc.

Innovative approach for relativistic dynamics

Strictly in Minkowski space
DIS, PDFs, DVCS, GPDs, etc.

Interpolation between Instant and Front Forms

K. Hornbostel, PRD45, 3781 (1992) - RQFT
C.Ji and S.Rey,PRD53,5815(1996) - Chiral Anomaly
C.Ji and C. Mitchell, PRD64,085013 (2001) - Poincare Algebra
C.Ji and A. Suzuki, PRD87,065015 (2013) - Scattering Amps
C.Ji, Z. Li and A. Suzuki, PRD91, 065020 (2015) - EM Gauges
Z.Li, M. An and C.Ji, PRD92, 105014 (2015) - Spinors
C.Ji, Z.Li, B.Ma and A.Suzuki, in prepartion - Fermion Prop.

$$
" e^{+} e^{-} \rightarrow \mu^{+} \mu^{-"}
$$

Feynman Diagram: Invariant under all Poincaré generators

(a)

(b)

Individual Time-Ordered Diagrams: Invariant under stability group Kinematic vs. Dynamic Generators

(a)

S.Weinberg, PR158,1638(1967) "Dynamics at Infinite Momentum"

(b)

$$
-\frac{1}{E q+E_{3}+E_{4}}
$$

$$
=-\frac{1}{E q+E_{1}+E_{2}}
$$

$$
\rightarrow \quad 0
$$

Note however this is still in the instant form.

$$
\delta=0
$$

$$
p_{0}=p^{0} \longleftarrow \quad p_{\hat{+}}=p^{0} \cos \delta-p^{3} \sin \delta
$$

$$
p_{\wedge}=p^{0} \sin \delta+p^{3} \cos \delta
$$

$$
\longrightarrow \begin{gathered}
\delta=\pi / 4 \\
p_{+}=p^{-} \\
p_{-}=p^{+}
\end{gathered}
$$

(b)
(a)

$$
\frac{1}{2 q^{0}}\left(\frac{1}{p_{1}^{0}+p_{2}^{0}-q^{0}}-\frac{1}{p_{1}^{0}+p_{2}^{0}+q^{0}}\right) \longleftarrow\left[\begin{array}{c}
\frac{1}{2 \omega_{q}}\left(\frac{1}{P_{\hat{+}}+\frac{S_{q--} \omega_{q}}{\mathbb{C}}}-\frac{1}{P_{\hat{+}}+\frac{S_{q-+}+\omega_{q}}{\mathbb{C}}}\right) \\
\omega_{q}=\sqrt{q_{2}^{2}+\mathbb{C}\left(\overrightarrow{\mathbf{q}}_{\perp}^{2}+m^{2}\right)} \\
\mathbb{C}=\cos 2 \delta \\
\mathbb{S}=\sin 2 \delta
\end{array} \quad \rightarrow \frac{1}{P^{+}} \frac{1}{\left\{P^{-}-\frac{\left(\overline{\mathbf{P}}_{2}^{2}+m^{2}\right)}{2 p^{2}}\right\}}\right.
$$

(a)

(b)

(b)

$$
\Sigma(a)+\Sigma(b)=1 /\left(s-m^{2}\right) ; s=2 \mathrm{GeV}^{2}, m=1 \mathrm{GeV}
$$

J-shape peak \& valley : $P_{z}=-\sqrt{\frac{s(1-C)}{2 C}} ; C=\cos (2 \delta)$
As $\mathrm{C} \rightarrow 0, \mathrm{P}^{+}=\mathrm{P}^{0}+\mathrm{P}_{\mathrm{z}} \rightarrow 0$ leads to LF Zero-modes.

$" e \mu \rightarrow e \mu "$

$$
m_{1}=1, m_{2}=2, p=3, \text { and } \theta=\pi / 3
$$

$$
\begin{gathered}
A^{\hat{+}}=0, \partial_{\wedge} A_{\perp}+\partial_{\perp} \mathbf{A}_{\perp} \mathbb{C}=0 \\
\delta \rightarrow 0 \\
(\mathbb{C} \rightarrow 1) \\
A^{0}=0, \nabla \cdot \mathbf{A}=0
\end{gathered}
$$

Coulomb Gauge

$$
\begin{gathered}
\sum_{\lambda= \pm} \epsilon_{\hat{\mu}}^{*}(\lambda) \epsilon_{\hat{\nu}}(\lambda)=-g_{\hat{\mu} \hat{\nu}}+\frac{(q \cdot n)\left(q_{\hat{\mu}} n_{\hat{\nu}}+q_{\hat{\nu}} n_{\hat{\mu}}\right)}{\mathbf{q}_{\perp}^{2} \mathbb{C}+q_{-}^{2}}-\frac{\mathbb{C} q_{\hat{\mu}} q_{\hat{\nu}}}{\mathbf{q}_{\perp}^{2} \mathbb{C}+q_{-}^{2}}-\frac{q^{2} n_{\hat{\mu}} n_{\hat{\nu}}}{\mathbf{q}_{\perp}^{2} \mathbb{C}+q_{-}^{2}} \\
\text { IFD }
\end{gathered}
$$

$$
-\eta_{\mu \nu}+\frac{(q \cdot n)\left(q_{\mu} n_{\nu}+q_{\nu} n_{\mu}\right)}{(q \cdot n)^{2}-q^{2}}-\frac{q_{\mu} q_{\nu}}{(q \cdot n)^{2}-q^{2}}-\frac{q^{2} n_{\mu} n_{\nu}}{(q \cdot n)^{2}-q^{2}}
$$

(a)

(b)

Total amplitude is independent of P^{Z} and δ as it must be.

(c)

$$
S=S^{\dagger}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & I \\
I & -I
\end{array}\right) \quad \begin{aligned}
& u_{\mathrm{S}}(p)=S u_{\mathrm{C}}(p) \\
& u_{\mathrm{C}}(p)=S^{\dagger} u_{\mathrm{S}}(p)
\end{aligned}
$$

$\mathbf{A}=\frac{1}{2}(\mathbf{J}+i \mathbf{K})$,
$\left[A_{i}, A_{j}\right]=i \epsilon_{i j k} A_{k}$,
$\left[B_{i}, B_{j}\right]=i \epsilon_{i j k} B_{k}$,
$\mathbf{B}=\frac{1}{2}(\mathbf{J}-i \mathbf{K})$,
$\left[A_{i}, B_{j}\right]=0, \quad(i, j, k=1,2,3)$

Helicity

M. Jacob and G. Wick, Ann. Phys., 7, 404 (1959)
K_{z} Dependent
vs.
C. Carlson and C.Ji, PRD, 67, 116002 (2003)

(1) (2) (3)(4)
$++\rightarrow++(\theta=\pi-0.001)$

(1) (2) (3)(4)
$++\rightarrow++(\theta=\pi-0.001)\left(m_{e}{ }^{\prime}=0.7 m_{e}\right)$

(1) (4)
(2) (3)

$10 \quad+-\rightarrow++(\theta=\pi-0.001)\left(m_{e}{ }^{\prime}=0.7 m_{e}\right)$

(1) (2) (3)(4)
$++\rightarrow++(\theta=\pi-0.001)\left(m_{e}^{\prime}=0.1 m_{e}\right)$

Fermion Propagator

(a)

(b)

$$
\begin{aligned}
\Sigma_{a}^{\mathrm{IFD}}+\Sigma_{b}^{\mathrm{IFD}} & =\frac{1}{2 q_{o n}^{0}}\left(\frac{q+m}{q^{0}-q_{o n}^{0}}-\frac{q+m}{q^{0}+q_{o n}^{0}}\right) \\
& =\frac{1}{2 q_{o n}^{0}} \frac{2 q_{o n}^{0}(q+m)}{\left(q^{0}\right)^{2}-\left(q_{o n}^{0}\right)^{2}} \\
& =\frac{q+m}{q^{2}-m^{2}}
\end{aligned}
$$

S.-J.Chang and T.-M. Yan, PRD7,1147(1973)

$$
\begin{gathered}
\Sigma_{a, \delta \rightarrow \frac{\pi}{4}}=\frac{q_{o n}+m}{q^{2}-m^{2}} \\
\Sigma_{b, \delta \rightarrow \frac{\pi}{4}}=\frac{\gamma^{+}}{2 q^{+}} \\
\frac{1}{q-m}=\frac{\sum_{s} u(q, s) \bar{u}(q, s)}{q^{2}-m^{2}}+\frac{\gamma^{+}}{2 q^{+}}
\end{gathered}
$$

(a)

Example Application: The Annihilation of Electron- positron Pair into Two Photons

(a)

$$
+-\mathrm{TO}+- \text {, a } \quad(\theta=\pi / 3)
$$

(b)

+ TO +-, b $\quad(\theta=\pi / 3)$

(c)
- Diagram (c) only exists in LFD
- Only one of (a) and (b) is allowed in LFD and the other one changes to instantaneous interaction in LFD

Direct Diagram

Exchanged Diagram Including electron mass

- Our interpolation method

$$
|\mathcal{M}|^{2}=2 e^{4}\left[\frac{u_{m}}{t_{m}}+\frac{t_{m}}{u_{m}}+2 m^{2}\left(\frac{s_{m}}{t_{m} u_{m}}-\frac{1}{t_{m}}-\frac{1}{u_{m}}\right)-4 m^{4}\left(\frac{1}{t_{m}{ }^{2}}+\frac{1}{u_{m}{ }^{2}}\right)\right]
$$

where $t_{m} \equiv t-m^{2}, u_{m} \equiv u-m^{2}$, and $s_{m} \equiv s-4 m^{2}$.

Taking electron mass zero

- Our interpolation method

$$
|\mathcal{M}|^{2}=2 e^{4}\left(\frac{u}{t}+\frac{t}{u}\right)
$$

Scattering Angle Dependence of the Annihilation Amplitudes: Chirality

When $m_{e}=0$, chirality is conserved.

Scattering Angle Dependence of the Annihilation Amplitudes: Chirality

When $\mathrm{m}_{\mathrm{e}} \neq 0$, no such property.

Conclusion and Outlook

- Whole landscape between IFD and LFD has been revealed in QED tree-level with interpolating spinors,gauge bosons,their propagators.
- Maximal stability group of LFD saves significant dynamic efforts.
- Interpolating quantum field theory appears useful in resolution of theoretical issues, e.g. LFZM.
- Loop level applications are underway, e.g. to investigate the mass gap equation in QCD.

Kinematic Operators (Members of Stability Group)

$$
\begin{gathered}
\operatorname{Exp}\left(-i \omega \hat{\aleph}^{i}\right)\left|x^{\hat{+}}>\propto\right| x^{\hat{+}}> \\
{\left[\hat{\aleph}^{i}, P^{\hat{+}}\right]=0}
\end{gathered}
$$

$\hat{\aleph}^{i}=\hat{F}^{i} \cos 2 \delta-\hat{E}^{i} \sin 2 \delta$

$$
\begin{gathered}
\delta=0 \\
-J^{2} \\
J^{1} \\
\hline
\end{gathered} \begin{gathered}
\hat{\aleph}^{1}=-J^{2} \cos \delta-K^{1} \sin \delta \\
\hat{\aleph}^{2}=J^{1} \cos \delta-K^{2} \sin \delta
\end{gathered} \rightarrow \begin{gathered}
\delta=\pi / 4 \\
\\
\left(J^{3}, P^{1}, P^{2}, P_{\hat{\wedge}}\right) \\
E^{2}=\left(J^{1}-K^{2}\right) / \sqrt{2}
\end{gathered}
$$

$$
\begin{aligned}
& \quad \text { particle at rest } \\
& p^{0}=M, p^{1}=p^{2}=p^{3}=0 \\
& \left(p_{\hat{\gamma}}=M \cos \delta, p_{\hat{\wedge}}=M \sin \delta\right)
\end{aligned}
$$

same $p^{0} \quad$ Under $\hat{\boldsymbol{\aleph}}^{i}$ transformation $\searrow p^{0}+p^{3}$ same

$$
\begin{aligned}
& \text { remain at rest } \\
& P^{0}=M ; p^{3}=0 \\
& P^{0}=M+\frac{\vec{p}_{\perp}^{2}}{2 M} ; p^{3}=-\frac{\vec{p}_{\perp}^{2}}{2 M} \\
& \downarrow \\
& \left(p^{0}\right)^{2}-\left(p^{3}\right)^{2}=\left(M+\frac{\vec{p}_{\perp}^{2}}{2 M}\right)^{2}-\left(-\frac{\vec{p}_{\perp}^{2}}{2 M}\right)^{2}=M^{2}+\vec{p}_{\perp}^{2}=2 p^{+} p^{-}>0
\end{aligned}
$$

Rational Energy-Momentum Dispersion Relation Vacuum gets simpler in LFD.

