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Stability Group 
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 Physical Meaning of Stability Group  

Invariant under Stability Group Elements 
            Kinematic Transformations  

Equal-time  
Wavefunction  

Time-ordered  
Scattering Amplitudes  



Dirac’s Proposition 

1949 

DIS, PDFs, DVCS, GPDs, etc. 

Traditional approach 
evolved from NR dynamics 

Innovative approach 
for relativistic dynamics  

Close contact with  
Euclidean space Strictly in Minkowski space 

T-dept QFT, LQCD, IMF, etc. 

Can they be linked? 



Interpolation between Instant and Front Forms 

K. Hornbostel, PRD45, 3781 (1992) – RQFT 
C.Ji and S.Rey, PRD53,5815(1996) – Chiral Anomaly 
C.Ji and C. Mitchell, PRD64,085013 (2001) – Poincare Algebra 
C.Ji and A. Suzuki, PRD87,065015 (2013) – Scattering Amps 
C.Ji, Z. Li and A. Suzuki, PRD91, 065020 (2015) – EM Gauges  
Z.Li, M. An and C.Ji, PRD92, 105014 (2015) – Spinors 
C.Ji, Z.Li, B.Ma and A.Suzuki, in prepartion – Fermion Prop. 



Feynman Diagram: Invariant under all Poincaré generators  

Individual Time-Ordered Diagrams: Invariant under stability group  
                         Kinematic vs. Dynamic Generators 
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S.Weinberg, PR158,1638(1967) 
“Dynamics at Infinite Momentum” 

Note however this is still in the instant form.  
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0 < δ < π /4
p ˆ + = p0 cosδ − p3 sinδ
p ˆ − = p0 sinδ + p3 cosδ

€ 

δ = 0
p0 = p0

−p3 = p3

€ 

δ = π /4
p+ = p−

p− = p+



Σ(a)+Σ(b)=1/(s-m2) ; s=2 GeV2, m=1GeV 

€ 

Pz = −
s(1−C)
2C

; C = cos(2δ)J-shape peak & valley : 

As C ! 0, P+ = P0+Pz !0 leads to LF Zero-modes.  





P.Srivastava and S. Brodsky, PRD64,045006(2001) 

IFD 
LFD 

C.Ji, Z. Li, and A. T. Suzuki, PRD91, 065020(2015) 



Total amplitude is  
independent of PZ 

and δ as it must be. 



68 individual xþ̂-ordered scattering amplitude is realized only
69 at δ ¼ π=4 and the disappearance of the connected con-
70 tributions to the current arising from the vacuum occurs
71 independent of the reference frame only when the inter-
72 polation angle is taken to yield the LFD. This affirms the
73 well-known saga of the longitudinal boost K3 which
74 maximizes the number of kinematic (i.e., interaction
75 independent) generators in LFD as seven out of ten
76 Poincaré generators. A dramatic character change of K3

77 from “dynamic” for 0 ≤ δ ≤ π=4 to “kinematic” in δ ¼ π=4
78 brings indeed a great benefit to use LFD for the study of
79 hadron physics. Our interpolation between IFD and LFD
80 made it also clear that the disappearance of the connected
81 contributions to the current arising from the vacuum in LFD
82 does not require the infinite momentum frame (IMF). It
83 thus resolves the confusion in the prevailing notion of
84 equivalence between the LFD and the IMF. For the study of
85 hadron physics in QCD, the built-in boost invariance
86 together with the simpler vacuum property in LFD is
87 certainly an appealing feature as it may save substantial
88 computational efforts in getting QCD solutions that respect
89 the full Poincaré symmetries.
90 Although we want ultimately to obtain a general for-
91 mulation for the QCD using the interpolation between the
92 IFD and the LFD, we start from the simpler theory to
93 discuss first the bare-bones structure that will persist even
94 in the more complicated theories. Subsequent to our study
95 of the simple scalar field theory [4] involving just the
96 fundamental degrees of freedom such as the momenta of
97 particles in scattering processes, we considered very
98 recently interpolating the electromagnetic gauge degree
99 of freedom between the IFD and the LFD and found that the

100 light-front gauge in the LFD is naturally linked to the
101 Coulomb gauge in the IFD through the interpolation angle
102 [5]. We also extended our interpolation of the scattering
103 amplitude presented in the simple scalar field theory [4] to
104 the case of the electromagnetic gauge field theory but still
105 with the scalar fermion fields known as the sQED theory
106 [5] and analyzed the lowest-order scattering processes in
107 sQED such as the analogues of the well-known QED
108 processes eμ → eμ and eþe− → μþμ−.
109 To promote the sQED calculation to the QED calcu-
110 lation, we now start discussing the fermion degrees of
111 freedom and their interpolation between IFD and LFD. Due
112 to a few different representations available for the spinors,
113 we examine the relationships among the available spinor
114 representations with the interpolation angle parameter 0 ≤
115 δ ≤ π=4 in this work. As the first step, we limit our
116 discussion here only for the on-mass-shell spinors and
117 analyze the interpolating helicity amplitudes for the proc-
118 esses involving fermions as the external particles. We
119 discuss a fermion and another fermion scattering process
120 as well as a fermion and antifermion pair annihilation and
121 creation process analogous to eμ → eμ and eþe− → μþμ−,
122 respectively. In this work, we focus on the effects from the

123initial and final fermion degrees of freedom rather than
124from the intermediate gauge boson which we have already
125studied in our previous work [5].
126For an overview of the available spinor representations,
127we may provide a schematic illustration as shown in Fig. 1
128and discuss the relationships among those representations.
129In Fig. 1, we denote the so-called “standard representation”
130and “chiral representation” as S and C. The transformation
131between the two representations S and C can be made by
132the transformation matrix S given by

S ¼ S† ¼ 1ffiffiffi
2

p
"
I I

I −I

#
; ð2Þ

133where I is the 2 × 2 identity matrix. As the Dirac matrices
134are related by

γμS ¼ SγμCS
†;

γμC ¼ S†γμSS; ð3Þ

135the spinors are related by

uSðpÞ ¼ SuCðpÞ;
uCðpÞ ¼ S†uSðpÞ; ð4Þ

F1:1FIG. 1 (color online). An illustration of the relations between
F1:2different conventions and names we use in this paper. The red
F1:3letters C and S stand for chiral and standard representations
F1:4respectively. The blue letters H and D stand for helicity spinor
F1:5and Dirac spinor respectively. The solid black arrow points from
F1:6the instant form to the light-front form, and the interpolation
F1:7angle δ goes from 0 to π=4. Both the helicity and Dirac spinors
F1:8can be generated for arbitrary interpolation angles. The dashed
F1:9purple arrow indicates the Melosh transformation, which relates

F1:10the instant Dirac spinor to the light-front helicity spinor.
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136 where the spinors uSðpÞ and uCðpÞ will be expressed
137 explicitly later as the four-component column vectors. The
138 six Lorentz group generators of rotation (J) and boost (K)
139 in S and C representations are also related by the trans-
140 formation matrix S such as JS ¼ SJCS†, KS ¼ SKCS†,
141 JC ¼ S†JSS, KC ¼ S†KSS, etc. as given by

JS ¼ JC ¼ 1

2

!
σ 0

0 σ

"
;

KS ¼ i
2

!
0 σ

σ 0

"
; KC ¼ i

2

!
σ 0

0 −σ

"
; ð5Þ

142 where σ denotes the Pauli matrices. It is clear that the
143 combinations of rotation and boost given by JC þ iKC
144 and JC − iKC operate only on the corresponding block-
145 diagonal 2 × 2 matrices as their explicit representations are

JC þ iKC ¼
!
0 0

0 σ

"
;

JC − iKC ¼
!
σ 0

0 0

"
: ð6Þ

146 Such decoupling in chiral representation may be under-
147 stood from the transformation of the Lorentz group algebra
148 with a single invariant SUð2Þ subalgebra of the rotation J
149 into two decoupled invariant SUð2Þ ⊗ SUð2Þ subalgebras
150 by defining a pair of specific combinations between
151 rotation and boost given by

A ¼ 1

2
ðJþ iKÞ; ð7Þ

152
B ¼ 1

2
ðJ − iKÞ; ð8Þ

153 which satisfy the following commutation relations:

½Ai; Aj& ¼ iϵijkAk;

½Bi; Bj& ¼ iϵijkBk;

½Ai; Bj& ¼ 0; ði; j; k ¼ 1; 2; 3Þ; ð9Þ

154 where A and B each generates a corresponding SUð2Þ
155 group algebra. The above specific combinations between
156 rotation and boost may suggest the two decoupled helical
157 motions of the particle that may be denoted as the right-
158 handed vs left-handed chirality. Such an idea motivates us
159 to consider the transformation S given by Eq. (2) between
160 the standard representation S and the chiral representation
161 C discussed above. The irreducible representation may then
162 be labeled by two angular momenta ðj; j0Þ in the decoupled
163 Lorentz group given by SUð2Þ ⊗ SUð2Þ, where j and j0

164 denote the quantum numbers corresponding to each indi-
165 vidual SUð2Þ subgroup consisting of A and B generators,

166respectively. In the case that one of the two angular
167momenta is absent (or zero), ðj; j0Þ corresponds to

ð0; jÞ → J ¼ −iK ðA ¼ 0Þ; ð10Þ

168ðj; 0Þ → J ¼ iK ðB ¼ 0Þ; ð11Þ

169as easily recognized in the chiral representation given by
170Eq. (6). Due to such a transparent decoupling, we will write
171all of our spinors for this work in the ð0; JÞ ⊕ ðJ; 0Þ chiral
172representation of the Lorentz group. Corresponding
173ð0; JÞ ⊕ ðJ; 0Þ standard representations can be found
174straightforwardly using the transformation matrix S given
175by Eq. (2):

ΨS ¼ SΨC ¼ 1ffiffiffi
2

p
!
1 1

1 −1

"!
ϕR

ϕL

"
¼ 1ffiffiffi

2
p

!
ϕR þ ϕL

ϕR − ϕL

"
;

ð12Þ

176where ϕR and ϕL are the right-handed and left-handed
177components in the chiral representation. As one can easily
178get the corresponding standard representation using the
179above relation, we will not list them explicitly in this work.
180In Fig. 1, we also denote the so-called “helicity spinors”
181and “Dirac spinors” as H and D. They represent the spinors
182obtained by two different procedures. Following the pro-
183cedure laid out by Jacob and Wick [12] that defines the
184helicity in the IFD and using the kinematic transformations
185defined in our previous works [4,5], we may now define the
186helicity applicable to any arbitrary interpolation angle δ. To
187define the helicity spinor in IFD, Jacob and Wick [12]
188started with a state at rest having a spin projection along the
189z direction equal to the desired helicity, then boosted it in
190the z direction to get the desired magnitude of momentum
191j~Pj, and then rotated it subsequently to get the momentum
192and spin projection in the desired direction. We follow the
193same procedure in an arbitrary interpolation angle δ,
194replacing the kinematic generators J1 and J2 in IFD by
195the corresponding kinematic generators K1̂ and K2̂ given
196by [4,5]

K1̂ ¼ −K1 sin δ − J2 cos δ;

K2̂ ¼ J1 cos δ − K2 sin δ; ð13aÞ

197where the interpolating kinematic operators K1̂ and K2̂

198coincide with the usual E1 and E2 of LFD modulo sign for
199δ ¼ π=4. As extensively discussed in Ref. [3], the trans-
200verse rotations (J1, J2) are kinematic in IFD (δ ¼ 0), while
201the LF transverse boosts (E1, E2) are kinematic in LFD
202(δ ¼ π

4). The procedure set by Jacob and Wick [12] in IFD
203can thus be generalized to any interpolation angle δ by the
204transformation matrix T given by
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129In Fig. 1, we denote the so-called “standard representation”
130and “chiral representation” as S and C. The transformation
131between the two representations S and C can be made by
132the transformation matrix S given by

S ¼ S† ¼ 1ffiffiffi
2

p
"
I I

I −I

#
; ð2Þ

133where I is the 2 × 2 identity matrix. As the Dirac matrices
134are related by

γμS ¼ SγμCS
†;

γμC ¼ S†γμSS; ð3Þ

135the spinors are related by

uSðpÞ ¼ SuCðpÞ;
uCðpÞ ¼ S†uSðpÞ; ð4Þ

F1:1FIG. 1 (color online). An illustration of the relations between
F1:2different conventions and names we use in this paper. The red
F1:3letters C and S stand for chiral and standard representations
F1:4respectively. The blue letters H and D stand for helicity spinor
F1:5and Dirac spinor respectively. The solid black arrow points from
F1:6the instant form to the light-front form, and the interpolation
F1:7angle δ goes from 0 to π=4. Both the helicity and Dirac spinors
F1:8can be generated for arbitrary interpolation angles. The dashed
F1:9purple arrow indicates the Melosh transformation, which relates

F1:10the instant Dirac spinor to the light-front helicity spinor.
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=
/q +m

q2 �m2

(80)

Hence the fact that the sum of the two individual time-
ordered propagators is equal to the covariant Feynman
propagator is proved.

When taking the light-front limit � ! ⇡
4

, i.e., C ! 0,
the light-front energy for the second diagram, Qbˆ+ ! 1,
however the existence of the spin sums on the numerator
makes it altogether a finite result that turns out to be the
instantaneous contribution in the light front propagator.
If the numerator were just 1 as in the scalar case, then
this term would vanish as we have showed [2]. The first
diagram, on the other hand, when taking limit to the
LFD, turns out to be the on-shell contribution.

⌃a,�!⇡
4
= lim

C!0

✓
1

2Qˆ

+

/Qa +m

q
ˆ

+

�Qaˆ

+

◆

=
1

2q�

/Qa +m

q� �Q�
a

=
/qon +m

2q+
�
q� � q�on

�

=
/qon +m

q2 �m2

(81)

⌃b,�!⇡
4
= lim

C!0

0

@ 1

2Qˆ

+

/Qb �m

q
ˆ

+

+
Sq�̂+Q+̂

C

1

A

= lim
C!0

0

BB@
1

2Qˆ

+

C
✓
� ˆ

+

Sq�̂+Q+̂

C � � ˆ�q
ˆ� � �?.q? �m

◆

Cq
ˆ

+

+ Sq
ˆ� +Qˆ

+

1

CCA

=
�+ (q� +Q+)

2q+ (q� +Q+)

=
�+

2q+
(82)

Now we use the interpolation-time-ordered fermion
propagator to calculate the scattering amplitude of the
process of a massless scalar particle scattering with a
fermion, i.e., scalar Compton scattering, as depicted in
Fig. ??. For the two di↵erent time-ordering we call a
and b, (see Fig. ??) their respective amplitudes are

Ma = ū(p
3

)·⌃a ·u(p1) = ū(p
3

)·
✓

1

2Qˆ

+

/Qa +m

q
ˆ

+

�Qaˆ

+

◆
·u(p

1

)

(83)
and

Mb = ū(p
3

)·⌃b·u(p1) = ū(p
3

)·
✓

1

2Qˆ

+

�/Qb +m

�q
ˆ

+

�Qbˆ+

◆
·u(p

1

)

(84)

FIG. 7: Kinematics of the scalar Compton scattering
process

To make numerical calculation we need to specify a con-
figuration of the kinematics of the process. For the sim-
plicity of calculation, we study the kinematics in the lab
frame, where the electron is initially at rest, as shown in
Fig. 7. However, di↵erent from the conventional choice,
we put the momentum of the final electron to be along
the z-axis. Thus, the 4-momenta of the particles can be
written as:

p
1

= (m, 0, 0, 0) (85a)

p
2

= (E
2

, E
2

sin�, 0, E
2

cos�) (85b)

p
3

= (E
3

, 0, 0, P
3

) (85c)

p
4

= (E
4

, E
4

sin(✓ + �), 0, E
4

cos(✓ + �)) (85d)

Taking into account the total energy conservation and 3-
momentum conservation, and also each particle’s energy-
momentum dispersion relation, the 6 variables in the
above expression can be reduced to 3 independent vari-
ables: m, E

2

, and ✓. Choosing as an illustrative example,
values m = 1, E

2

= 4, ✓ = ⇡, we are then able to nu-
merically calculate the amplitudes as a function of the
momentum boosted from the lab frame, and the inter-
polation angle �. The results are shown in Figs 8 and 9.

When we add the two time-ordering together, the re-
sulting amplitude is flat in helicity non-flip regions, as
shown in Fig. 10.
Then it can clearly be seen that if we sum the helicity

configurations and calculate the total scattering proba-
bility, it is a constant under P z and �, as shown in Fig.
??. We can also calculate the cross channel diagram, as
Fig. shows, and the results are shown in Figs. And the
total probability is again flat.
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FIG. 15: Total Probability of scalar Compton scattering
u channel

FIG. 16: Feynman diagram for Compton Scattering

ing two photons. The results agree with well-established
results both in instant form and front form. We found
that in the exact light front the amplitude is invariant un-
der boost, a property not possessed by any other form.
Many hadron physics theories are developed in instant
form and do not have a light-front counterpart. Hope-
fully our to-be-continued e↵ort of interpolating will help
transit them to the Light Front.
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FIG. 17: Time-ordered diagrams for Compton
scattering - s channel

FIG. 18: Time-ordered Compton Scattering amplitudes
for a particular set of helicities calculated as a function

of boost momentum and interpolation angle

FIG. 19: The exchanged Feynman diagram for
Compton scattering process
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FIG. 35: Covariant amplitudes for Compton Scattering
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FIG. 36: Probabilities of Compton Scattering



Example Application: The Annihilation of 
Electron- positron Pair into Two Photons 

• Diagram (c) only 
exists in LFD 

• Only one of (a) and 
(b) is allowed in LFD 
and the other one 
changes to 
instantaneous 
interaction in LFD 
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Scattering Angle Dependence of the 
Annihilation Amplitudes:Total Probability 
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Scattering Angle Dependence of the 
Annihilation Amplitudes:Total Probability 
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Scattering Angle Dependence of the 
Annihilation Amplitudes:Total Probability 

9 



Scattering Angle Dependence of the 
Annihilation Amplitudes: Chirality 

10 

When me=0, chirality is conserved. 



Scattering Angle Dependence of the 
Annihilation Amplitudes: Chirality 

10 

When me ≠0, no such property. 



Conclusion and Outlook  
•  Whole landscape between IFD and LFD 

has been revealed in QED tree-level with 
interpolating spinors,gauge bosons,their 
propagators.  

•  Maximal stability group of LFD saves 
significant dynamic efforts. 

•  Interpolating quantum field theory appears 
useful in resolution of theoretical issues, 
e.g. LFZM. 

•  Loop level applications are underway, e.g. 
to investigate the mass gap equation in 
QCD.   
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ˆ ℵ i = ˆ F i cos2δ − ˆ E i sin2δ

[ℵ̂i,P+̂ ]= 0

      Kinematic Operators 
(Members of Stability Group) 

€ 

Exp −iω ˆ ℵ i( ) | x ˆ + >∝ | x ˆ + >

€ 

ˆ ℵ 1 = −J 2 cosδ −K1 sinδ
ˆ ℵ 2 = J1 cosδ −K 2 sinδ

€ 

δ = π /4

−E1 = −(J 2 +K1) / 2

E 2 = (J1 −K 2) / 2
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δ = 0
−J 2

J1

(J 3 , P1 , P2 , P−̂ )
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p0 = M , p1 = p2 = p3 = 0

€ 

(p ˆ + = M cosδ , p ˆ − = M sinδ)

particle at rest 
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P 0 = M +
 p ⊥
2

2M
; p3 = −

 p ⊥
2

2M
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P 0 = M ; p3 = 0
remain at rest can move 
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(p0)2 − (p3)2 = (M +
 p ⊥
2

2M
)2 − (−

 p ⊥
2

2M
)2 = M 2 +

 p ⊥
2 = 2p+ p− > 0

Rational Energy-Momentum Dispersion Relation 
           Vacuum gets simpler in LFD. 

Under  
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p0 + p3
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p0 same same 
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ˆ ℵ i transformation  


