Review of current ATLAS Higgs physics results

L. A. Thomsen (Yale University)

On behalf of the ATLAS Collaboration

September 18, 2017

Introduction

This talk will cover the latest ATLAS Higgs result

- ► Focus on the results from 2017
- ► Focus on SM Higgs
- Split between the bosonic decay and fermionic decay
 - ▶ Bosonic decay will focus on $H \to ZZ$, $H \to \gamma \gamma$ and $H \to Z\gamma$
 - ► The first two mentioned channels are confirmed in Run2.
 - Fermionic decay will focus on $H \rightarrow \mu\mu$, $H \rightarrow bb$
 - ► These channels are not observed in individual channels.

H
ightarrow WW, H
ightarrow au au are in back-up

Higgs production modes

Introduction

A lot of data have been collected in Run2 at 13 TeV

► Higgs cross section increases significantly with \sqrt{S}

\sqrt{S}	σ_H
7TeV	18.9pb
8TeV	24.1pb
13TeV	62.6pb

Many more Higgs particles to analyze!

Collected data at ATLAS

$$H \rightarrow ZZ/\gamma\gamma$$

Selection:

- ► At least four leptons
- ► Two same-flavour opposite-sign (SFOS) lepton pairs,
 - $(4\mu, 2e2\mu, 2\mu2e, 4e)$
- ► Requirement of the invariant mass m_{4l} : 115 GeV $< m_{4l} < 130$ GeV

Number of events:

Final state	Signal (125 GeV)	ZZ^*	$Z + \text{jets}, t\bar{t}, WZ, ttV, VVV$	Expected	Observed
4μ	20.6 ± 1.7	15.9 ± 1.2	2.0 ± 0.4	38.5 ± 2.1	38
$2e2\mu$	14.6 ± 1.1	11.2 ± 0.8	1.6 ± 0.4	27.5 ± 1.4	34
$2\mu 2e$	11.2 ± 1.0	7.4 ± 0.7	2.2 ± 0.4	20.8 ± 1.3	26
4e	11.1 ± 1.1	7.1 ± 0.7	2.1 ± 0.4	20.3 ± 1.3	24
Total	57 ± 5	41.6 ± 3.2	8.0 ± 1.0	107 ± 6	122

Result

The inclusive fiducial σ_H is measured to $3.62^{+0.53}_{-0.50}(stat)^{+0.25}_{-0.20}(sys)$ fb

The Standard Model prediction of $2.91 \pm 0.13 \mbox{\it fb}$

Fiducial σ_H vs. the N_{jets} .

Needs to be tested with more data and more accurate QCD calculations

(More plots in backup)

Signal strength

$$\frac{\sigma \times B}{(\sigma \times B)_{SM}} = 1.28^{+0.18}_{-0.17} (stat)^{+0.08}_{-0.06} (exp)^{+0.08}_{-0.06} (th)$$

- ▶ Definition of κ_V and κ_F
 - ▶ Bosons: $\kappa_V = \kappa_W = \kappa_Z$
 - Fermions $\kappa_F = \kappa_t = \kappa_b = \kappa_c = \kappa_\tau = \kappa_\mu = \kappa_g$

 Assumed no undetected or invisible Higgs boson decays

Selection

- Two isolated photons with $\frac{E_T}{m_{\gamma\gamma}}$ >0.35 and $\frac{E_T}{m_{\gamma\gamma}}$ >0.25
- ► $m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\alpha)}$ is fitted between 105 GeV and 160 GeV
- ► Signal efficiency is 42%

Signal strengths measured for the different production processes:

m_H is measured in combination of H $\rightarrow \gamma \gamma$, H \rightarrow ZZ* \rightarrow 4I (36 fb^1)

- Comparison with the combined m_H compared to the LHC run1 result
- The main uncertainties are LAr calibrations and energy loss estimate in materials

Main uncertainties on combined mass:

<u>iviaili ulicertaili</u>	<u>ties on combined mas</u> s
Source	Systematic uncertainty on m_H [MeV]
LAr cell non-linearity	90
LAr layer calibration	90
Non-ID material	60
ID material	50
Lateral shower shape	50
$Z \rightarrow ee$ calibration	30
Muon momentum scale	20
Conversion reconstruction	20

 σ_H is measured in combination of H $\rightarrow \gamma \gamma$, H \rightarrow ZZ* \rightarrow 4l with 36fb¹

Measured σ_H

$$\sigma_H = 57.0^{+6.0}_{-5.9}(stat)^{+4.0}_{-3.0}(sys)pb$$

SM prediction: $\sigma_H = 55.6^{+2.4}_{-3.4}pb$

The κ framework:

The framework parameterizes H interactions as multiplicative coefficients to cross sections and partial widths

$$\sigma(i \to H \to f) = \kappa_i^2 \sigma_i^{SM} \frac{\kappa_f^2 \Gamma_f^{SM}}{\kappa_H^2 \Gamma_H^{SM}}$$

► Require two same-flavour opposite-charge leptons (SFOS) to form a Z boson candidate and at least one photon candidate

Split into 6 categories:

- ▶ VBF-enriched
- ▶ High relative P_T
- ► ee high p_{Tt}
- ► ee low p_{Tt}
- $\blacktriangleright \mu \mu$ high p_{Tt}
- $\blacktriangleright \mu \mu \text{ low } p_{Tt}$

Where
$$p_{Tt} = (2|p_x^Z p_y^{\gamma} - p_x^{\gamma} Z p_y^Z|)/P_T^{Z\gamma}$$

Most sensitive categories

Result:

The observed(expected) upper limit on $\sigma \cdot B$ is 6.6(5.2) times the SM prediction at 95% CL

$H \rightarrow FERMIONS$

Main selection:

- 2 opposite sign muons
- $ightharpoonup E_T^{MISS} < 80 \, GeV$
- ► Veto b-jets

Split in 8 sub-categories

- The VBF categories require events with at least two jets
- ▶ Rest split wrt to P_T^μ and η^μ

With ATLAS data from Run1+2 the observed(Expected) upper limit on $\sigma \times B$ is 2.8(2.9) at 95%CL

Analysis targeting $ZH \rightarrow \nu \nu bb$, $WH \rightarrow l \nu bb$ and $ZH \rightarrow l l bb$

► The analysis is done by splitting into number of lepton and exactly 2 b-tagged jets.

8 subcategories for signal region, and 6 CR

			Categories			
Channel	SR/CR	75 GeV	$V < p_{\rm T}^{V} < 150 \; {\rm GeV}$	$p_{\rm T}^{V} > 1$	50 GeV	
Chamier	SityOit	2 jets	3 jets	2 jets	3 jets	
0-lepton	SR	-	-	BDT	BDT	
1-lepton	SR	-	-	BDT	BDT	
2-lepton	SR	BDT	BDT	BDT	BDT	
1-lepton	W + HF CR	-	-	Yield	Yield	
2-lepton	$e\mu$ CR	m_{bb}	m_{bb}	Yield	m_{bb}	

Discriminating variable for 1 lepton case

Analysis targeting $ZH \rightarrow \nu \nu bb$, $WH \rightarrow I \nu bb$ and $ZH \rightarrow IIbb$

Best fit

Run1+run2 results: $\mu = 0.90 \pm 0.18(stat.)^{+0.21}_{-0.19}(syst.)$. Observed(expected) significance: $3.6\sigma(4.0\sigma)$

Evidence for bottom Yukawa coupling!

Conclusion

At ATLAS Higgs property measurements are performed by ATLAS at $\sqrt{s}=7 {\rm TeV},~\sqrt{s}=8 {\rm TeV}$ and $\sqrt{s}=13 {\rm TeV}$

Run 2 data allows a precise testing of the Higgs properties.

- ► Several decay channels are considered especially involving bosons
 - So far all couplings and differential distributions regarding the Higgs particle have been consistent with the standard model, but the statistical uncertainties precludes definite conclusions.
 - ► Mass measurement also updated
- ► There are found evidence for bottom Yukawa coupling

BACK-UP

Selection and categories:

Channel	Preselection cuts			
	Exactly two isolated opposite-sign leptons			
	Events with τ_{had} candidates are rejected			
	$30 \text{ GeV} < m_{\tau\tau}^{\text{vis}} < 100 (75) \text{ GeV for DF (SF) events}$			
	$\Delta \phi_{\ell\ell} < 2.5$			
	$E_T^{\text{miss}} > 20 \text{ (40) GeV for DF (SF) events}$			
$\tau_{\text{lep}}\tau_{\text{lep}}$	$E_T^{\text{miss,HPTO}} > 40 \text{ GeV for SF events}$			
	$p_T^{\ell_1} + p_T^{\ell_2} > 35 \text{ GeV}$			
	Events with a b-tagged jet with $p_T > 25 \text{ GeV}$ are rejected			
	$0.1 < x_{\tau_1}, x_{\tau_2} < 1$			
	$m_{\tau\tau}^{\text{coll}} > m_Z - 25 \text{ GeV}$			
	Exactly one isolated lepton and one medium τ_{had} candidate with opposite charges			
$\tau_{\rm lep} \tau_{\rm had}$	$m_{\rm T} < 70 \; {\rm GeV}$			
	Events with a b-tagged jet with $p_T > 30 \text{ GeV}$ are rejected			
	One isolated medium and one isolated tight opposite-sign τ_{had} -candidate			
	Events with leptons are vetoed			
	$E_{\mathrm{T}}^{\mathrm{miss}} > 20 \text{ GeV}$			
$\tau_{\text{had}}\tau_{\text{had}}$	$E_{\rm T}^{\rm miss}$ points between the two visible taus in ϕ , or min[$\Delta \phi(\tau, E_{\rm T}^{\rm miss})$] $< \pi/4$			
- 11114 - 11114	$0.8 < \Delta R(\tau_{had_1}, \tau_{had_2}) < 2.4$			
	$\Delta \eta(\tau_{\text{had}_1}, \tau_{\text{had}_2}) < 1.5$			
Channel	VBF category selection cuts			
	At least two jets with $p_T^{j_1} > 40 \text{ GeV}$ and $p_T^{j_2} > 30 \text{ GeV}$			
$\tau_{\rm lep} \tau_{\rm lep}$	$\Delta \eta(j_1, j_2) > 2.2$			
	At least two jets with $p_T^{j_1} > 50 \text{ GeV}$ and $p_T^{j_2} > 30 \text{ GeV}$			
$\tau_{\rm lep} \tau_{\rm had}$	$\Delta \eta(j_1, j_2) > 3.0$			
	$m_{\tau\tau}^{\text{vis}} > 40 \text{ GeV}$			
	At least two jets with $p_T^{j_1} > 50 \text{ GeV}$ and $p_T^{j_2} > 30 \text{ GeV}$			
$\tau_{\rm had} \tau_{\rm had}$	$p_T^{j_2} > 35 \text{ GeV for jets with } \eta > 2.4$			
	$\Delta \eta(j_1, j_2) > 2.0$			
Channel	Boosted category selection cuts			
$\tau_{\rm lep} \tau_{\rm lep}$	At least one jet with $p_T > 40 \text{ GeV}$			
All	Failing the VBF selection			
7111	$p_{\rm T}^{H} > 100 \; {\rm GeV}$			

Number of events:

ranibel of events.							
ηеρηερ	VBF			Boosted			
Total signal		11 ± 4			E 13		
Total background		130 ± 7		3400	± 64		
Data		152		34	28		
$\tau_{\rm lep} \tau_{\rm had}$	Tight VBF	Loose VBF		Boosted			
Signal	8.8 ± 3	17 ± 6		52 ± 17			
Background	52 ± 4	398 ± 17		4399 ± 73			
Data	62	407		4435			
	VBF high p_T^H	VBF low p_{π}^{H}		VBF low p_{T}^{H} Boosts			
7had 7had		tight	loose	high p_T^H	low p_T^H		
Signal	5.7 ± 1.9	5.2 ± 1.9	3.7 ± 1.3	17 ± 6	20 ± 7		
Background	59 ± 4	86 ± 5	156 ± 7	1155 ± 28	2130 ± 41		
Data	65	94	157	1204	2121		

Fitted μ values

		Fitted μ values				
	\sqrt{s}	Multivariate analysis	Cut-based analysis			
$\tau_{\rm lep} \tau_{\rm lep}$	8 TeV	$1.9^{+1.0}_{-0.9}$	$3.2^{+1.4}_{-1.3}$			
$\tau_{ m lep} \tau_{ m had}$	8 TeV	$1.1^{+0.6}_{-0.5}$	$0.7^{+0.7}_{-0.6}$			
$ au_{ m had} au_{ m had}$	8 TeV	$1.8^{+0.9}_{-0.7}$	$1.6^{+0.9}_{-0.7}$			
All channels	8 TeV	$1.53^{+0.47}_{-0.41}$	$1.43^{+0.55}_{-0.49}$			

Combined mass for $\tau_{lep}\tau_{lep}$, $\tau_{lep}\tau_{had}$

Measurements of the Higgs boson production cross section via Vector Boson Fusion (VBF) and associated (WH) production

VBF:

Signal region		$Z \rightarrow \tau \tau$ CR	Top-quark CR			
Preselection	Two isolated leptons $(\ell = e, \mu)$ with opposite charge Preselection $p_{\mathrm{T}}^{\mathrm{lead}} > 25GeV \; (p_{\mathrm{T}}^{\mathrm{lead}} > 22GeV \; \text{for muons in 2015}), p_{\mathrm{T}}^{\mathrm{mblead}} > 15GeV$					
		$m_{\ell\ell} > 10 GeV$, $N_{\rm jet} \ge 2$	N/ 1			
A DDT:	$N_{b\text{-jet}} = 0$ $N_{b\text{-jet}} = 0$ $N_{b\text{-jet}} = 1$					
	A BDT is trained at this level. Eight discriminant variables are used: $\Delta \phi_{\ell\ell}$, $m_{\ell\ell}$, $m_{\rm T}$, Δy_{jj} , m_{jj} , $p_{\rm T}^{\rm tot}$, $\sum_{\ell,j} m_{\ell j}$, and $\eta_{\ell}^{\rm centrality}$					
Selection	$m_{\tau\tau} < 66.2 GeV$	$ m_{\tau\tau} - m_Z < 25 GeV$	-			
	_	$m_{\ell\ell} < 80 GeV$	-			
	OLV applied, CJV applied, BDT > -0.8					
	$SR1: -0.8 < BDT \le 0.7$	_	-			
	SR2: $0.7 < BDT \le 1$	=	_			

WH

Category	Z-dominated SR ≥ 1 SFOS pair	Z-depleted SR no SFOS pair	
Preselection	Three isolated leptons $(p_T > 15 \text{ GeV})$ total charge = ± 1 ≥ 1 lepton matches to the trigger		
Background Rejection	$\begin{split} N_{\rm jet} &\leq 1, N_{b - {\rm jet}} = \\ E_{\rm T}^{\rm miss} &> 50 {\rm GeV} \\ m_{\ell + \ell -} - m_Z &> 25 {\rm GeV} \\ m_{\ell + \ell -}^{\rm mass} &< 200 {\rm Ge} \\ m_{\ell + \ell -}^{\rm miss} &> 12 {\rm GeV} \end{split}$	- $Z/\gamma^* \rightarrow ee$ veto	
$H \rightarrow WW^* \rightarrow \ell\nu\ell\nu$ topology	$\Delta R_{\ell_0 \ell_1} < 2.0$		

CR	Process	Reference SR	Changes w.r.t. reference SR
CRa	$WZ/W\gamma^*$	Z-dominated	≥ 1 SFOS pair with $ m_{\ell\ell}-m_Z <25$ GeV
CRb	$Z\gamma$	Z-dominated	no Z-mass veto $ m_{\ell\ell\ell} - m_Z < 15 \text{ GeV}$ $E_{\mathrm{T}}^{miss} < 50 \text{ GeV}$ only $eee, \mu\mu e$
CRc	Z+jets	Z-dominated	\geq 1 SFOS pair with $ m_{\ell\ell} - m_Z < 25$ GeV $E_{\ell\ell}^{miss} < 50$ GeV $ m_{\ell\ell\ell} - m_Z > 15$ GeV one lepton without an isolation requirement (NFs are derived for e-fake sample and μ -fake sample separately)
CRd	Top quark	Z-dominated	no $m_{\ell^+\ell^-}^{\rm max}$ and $\Delta R_{\ell_0\ell_1}$ cuts at least 1 jet one b -jet one lepton without an isolation requirement
CRe	Top quark	Z-depleted	no $m_{\ell^+\ell^-}^{\rm max}$ and $\Delta R_{\ell_0\ell_1}$ cuts at least 1 jet one b -jet one lepton without an isolation requirement

Category	CRa	CRb	CRc e-fake	CRc μ-fake	CRd	CRe
WH Other Higgs	1.0 ± 0.4 0.8 ± 0.0	0.3 ± 0.0 0.0 ± 0.0	0.4 ± 0.1 0.4 ± 0.0	0.5 ± 0.0 0.4 ± 0.0	0.2 ± 0.1 0.1 ± 0.0	0.1 ± 0.1 0.0 ± 0.0
VV VVV Top quark Z+jets	$\begin{array}{c} 207 & \pm 15 \\ 0.9 \pm 0.2 \\ 3.7 \pm 0.6 \\ 2.5 \pm 1.2 \end{array}$	$\begin{array}{c} 163 & \pm 53 \\ 0.0 \pm & 0.0 \\ 0.4 \pm & 0.2 \\ 0.0 \pm & 0.0 \end{array}$	$\begin{array}{c} 156 & \pm 13 \\ 0.2 \pm & 0.0 \\ 7.3 \pm & 0.9 \\ 230 & \pm 83 \end{array}$	$\begin{array}{c} 163 & \pm 14 \\ 0.2 \pm & 0.0 \\ 9.1 \pm & 1.2 \\ 212 & \pm 73 \end{array}$	$\begin{array}{c} 4.4 \pm 0.8 \\ 0.2 \pm 0.1 \\ 234 \pm 19 \\ 2 \pm 0.7 \end{array}$	1.0 ± 0.5 0.2 ± 0.0 194 ± 19 0.1 ± 0.1
Total background Observed	$\begin{array}{cc} 215 & \pm 15 \\ 217 & \end{array}$	163 ± 52 163	394 ± 82 393	385 ±71 387	$\begin{array}{cc} 240 & \pm 20 \\ 241 & \end{array}$	195 ± 19 195

VBF

WH

$$\mu_{VBF} = 1.7^{+1.1}_{0.9} \\ \mu_{WH} = 3.2^{+4.4}_{4.2}$$

$$\mu_{WH} = 3.2^{+4.}_{4.2}$$

Search for the Standard Model Higgs boson produced in association with top quarks and decaying into bb^- in pp collisions at $\sqrt{s} = 8 \, TeV$

Basic selection

- ▶ ttbar selection
- ► Require additional b-jet
- ► Split the analyses according to the number of jets

	Leptons and jets				
Muons:	$p_{\rm T} > 5 { m ~GeV}, \eta < 2.7$				
Electrons:	$p_{\rm T} > 7 \; {\rm GeV}, \; \eta < 2.47$				
Jets:	$p_{\rm T} > 30 \text{ GeV}, y < 4.4$				
Jet-lepton overlap removal:	$\Delta R(\text{jet}, \ell) > 0.1 (0.2) \text{ for muons (electrons)}$				
Lepton selection and pairing					
Lepton kinematics:	$p_{\rm T} > 20, 15, 10 \; { m GeV}$				
Leading pair (m_{12}) :	SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $				
Subleading pair (m_{34}) :	remaining SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $				
Event selection	on (at most one quadruplet per channel)				
Mass requirements:	$50 < m_{12} < 106 \text{ GeV}$ and $12 < m_{34} < 115 \text{ GeV}$				
Lepton separation:	$\Delta R(\ell_i, \ell_j) > 0.1 (0.2)$ for same- (different-) flavour leptons				
J/ψ veto:	$m(\ell_i, \ell_j) > 5 \text{ GeV}$ for all SFOS lepton pairs				
Mass window:	$115 \; GeV < m_{4\ell} < 130 \; GeV$				

