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Importance of Being Critical

Phase Diagram of Water (http://www1.lsbu.ac.uk/)

• One, possibly two,
critical points.

• Extreme density
fluctuations
=⇒ Critical
Opalescence (T.

Andrews, Royal Society 1869).
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Importance of Being Critical

Phase Diagram of Water (http://www1.lsbu.ac.uk/)

• One, possibly two,
critical points.

• Extreme density
fluctuations
=⇒ Critical
Opalescence (T.

Andrews, Royal Society 1869).

• SCF dissolves
material like liquid
but passes through
solid like gas.

• Dielectric constant
& Viscosity ↓.
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• Discontinuous ε – Nonzero
Latent Heat– & finite Cv
→ First order PT.
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• Discontinuous ε – Nonzero
Latent Heat– & finite Cv
→ First order PT.

• Continuous ε, & diverging
Cv → Second order PT.

• In(Finite) Correlation
Length at 2nd (1st) Order
transition.

• “Cross-over” – mere rapid
change in ε, with maybe a
sharp peaked Cv.
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Critical Point : The meV Scale

↑ 26 meV using
~ = c = k = 1 =⇒ 1.16 ×104 ◦K ≡ 1 eV; Picts From Wikipedia
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♥ Supercriticality is likely the cause of natural wonders such as black smokers.

♦ Supercritical fluid extraction is recognised as a green technology for production
of essence from herbs and plants.
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♥ Supercriticality is likely the cause of natural wonders such as black smokers.

♦ Supercritical fluid extraction is recognised as a green technology for production
of essence from herbs and plants.

♥ About a third of hop extraction using supercritical CO2!

♠ Many liquid fueled engines exploit such supercritical transitions.
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Strong Interactions
• Molecular Interactions, residual

Electromagnetism of atomic
constituents, lead to liquid-gas
phase transitions.
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Strong Interactions
• Molecular Interactions, residual

Electromagnetism of atomic
constituents, lead to liquid-gas
phase transitions.

• Rutherford’s Scattering Experiment
& its successors → discovery
of various layers, nucleus,
proton/neutron....

• Quarks and Leptons – Basic building
blocks : Proton (uud), Neutron
(udd), Pion (ud̄)....

• A Variety of Vector Bosons : Carriers
of forces.
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Strengths in a ratio 10−39 : 10−5 : 10−2 : 1
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Strengths in a ratio 10−39 : 10−5 : 10−2 : 1

(Anti-)Quarks come in three (anti-)colours, making gluons also coloured.
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Standard Model’s Zoo
Family → I II III

Light Cone 2017, University of Mumbai, Mumbai, September 19, 2017 R. V. Gavai Top 8



Quantum Chromo Dynamics (QCD)

• (Gauge) Theory of interactions of quarks-gluons.

• Similar to structure in theory of electrons & photons (QED).
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• Similar to structure in theory of electrons & photons (QED).

• Many more “photons” (Eight) which carry colour charge & hence interact
amongst themselves.

• Unlike QED, the coupling is usually very large : by ∼ 100.
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Quantum Chromo Dynamics (QCD)

• (Gauge) Theory of interactions of quarks-gluons.

• Similar to structure in theory of electrons & photons (QED).

• Many more “photons” (Eight) which carry colour charge & hence interact
amongst themselves.

• Unlike QED, the coupling is usually very large : by ∼ 100.

• Much richer structure : Quark Confinement, Dynamical Symmetry Breaking..

• Very high interaction (binding) energies. E.g., MProton � (2mu +md), by a
factor of 100 → Understanding it is knowing where the Visible mass of
Universe comes from.
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Chiral Symmetry & Effective quark mass

• Spin 1/2 particle of mass m ⇒ Sz = ±1/2. Let z-axis be along its momentum
~P
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Chiral Symmetry & Effective quark mass

• Spin 1/2 particle of mass m ⇒ Sz = ±1/2. Let z-axis be along its momentum
~P : A) [Sz →] along the momentum [~P =⇒]

OR

B) Opposite to it, i. e., [Sz ←] along [~P =⇒] ≡ [Sz →] along [~P ⇐=].
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OR

B) Opposite to it, i. e., [Sz ←] along [~P =⇒] ≡ [Sz →] along [~P ⇐=].

• Particle in state A can be transformed to state B by a Lorentz transformation
along z-axis.

• The particle must come to rest in between : m 6= 0.
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Chiral Symmetry & Effective quark mass

• Spin 1/2 particle of mass m ⇒ Sz = ±1/2. Let z-axis be along its momentum
~P : A) [Sz →] along the momentum [~P =⇒]

OR

B) Opposite to it, i. e., [Sz ←] along [~P =⇒] ≡ [Sz →] along [~P ⇐=].

• Particle in state A can be transformed to state B by a Lorentz transformation
along z-axis.

• The particle must come to rest in between : m 6= 0.

• For (Nf) massless particles, A or B do not change into each other: Chiral
Symmetry (SU(Nf)× SU(Nf)).
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• Interactions can break the chiral symmetry dynamically, leading to effective
masses for these particles.

• Light pions (mπ =0.14 GeV) and heavy baryons (protons/neutrons; mN=0.94
GeV) arise this way (Y. Nambu, Physics Nobel Prize 2008).
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GeV) arise this way (Y. Nambu, Physics Nobel Prize 2008).

• Chiral symmetry may get restored at sufficiently high temperatures or densities.
Effective mass then ‘melts’ away, just as magnet loses its magnetic properties
on heating.

• New States at High Temperatures/Density expected on basis of models.
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• Interactions can break the chiral symmetry dynamically, leading to effective
masses for these particles.

• Light pions (mπ =0.14 GeV) and heavy baryons (protons/neutrons; mN=0.94
GeV) arise this way (Y. Nambu, Physics Nobel Prize 2008).

• Chiral symmetry may get restored at sufficiently high temperatures or densities.
Effective mass then ‘melts’ away, just as magnet loses its magnetic properties
on heating.

• New States at High Temperatures/Density expected on basis of models.

• Quark-Gluon Plasma is such a phase. It presumably filled our Universe a few
microseconds after the Big Bang & can be produced in Relativistic Heavy Ion
Collisions. QCD Critical Point arises also due to Chiral Symmetry.

• Ideally, QCD should shed light on its richer structure : Quark Confinement,
Dynamical Symmetry Breaking.. But Models did that first.
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QCD Phase diagram

♠ A fundamental aspect – Critical Point in T -µB plane;
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QCD Phase diagram

♠ A fundamental aspect – Critical Point in T -µB plane; Based on symmetries and
models, expected QCD Phase Diagram

From Rajagopal-Wilczek Review,
hep-ph/0011333
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QCD Phase diagram

♠ A fundamental aspect – Critical Point in T -µB plane; Based on symmetries and
models, expected QCD Phase Diagram

From Rajagopal-Wilczek Review,
hep-ph/0011333

... but could, however, be ...

Τ
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QCD Phase diagram

♠ A fundamental aspect – Critical Point in T -µB plane; Based on symmetries and
models, expected QCD Phase Diagram

From Rajagopal-Wilczek Review,
hep-ph/0011333

... but could, however, be ...

Τ

(McLerran-

Pisarski 2007; Castorina-RVG-Satz 2010)

Constituent Q-Gas (PC-RVG-Satz)
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Putting QCD to Work

• QCD Partition Function : ZQCD = Tr exp[−(HQCD − µBNB)/T ].

• A first-principles calculation of ε(µ, T ) or P (µ, T ) to look for phase transitions,
Critical Point and many phases using the underlying theory QCD alone: NO
free parameters and NO arbitrary assumptions.
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• QCD Partition Function : ZQCD = Tr exp[−(HQCD − µBNB)/T ].

• A first-principles calculation of ε(µ, T ) or P (µ, T ) to look for phase transitions,
Critical Point and many phases using the underlying theory QCD alone: NO
free parameters and NO arbitrary assumptions.

• Price to pay : Functional integrations have to be done over quark and gluon
fields :

∫
dx F (x)→

∫
Dφ F [φ(x)].
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Putting QCD to Work

• QCD Partition Function : ZQCD = Tr exp[−(HQCD − µBNB)/T ].

• A first-principles calculation of ε(µ, T ) or P (µ, T ) to look for phase transitions,
Critical Point and many phases using the underlying theory QCD alone: NO
free parameters and NO arbitrary assumptions.

• Price to pay : Functional integrations have to be done over quark and gluon
fields :

∫
dx F (x)→

∫
Dφ F [φ(x)].

• Simpson integration trick :
∫
dx F (x) = lim∆x→0

∑
i ∆x F (xi).

• Its analogue to perform functional integrations needs discretizing the
space-time on which the fields are defined : Lattice Field Theory !
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Basic Lattice QCD

• Discrete space-time : Lattice
spacing a UV Cut-off.

• Quark fields ψ(x), ψ̄(x) on
lattice sites.

• Gluon Fields on links : Uµ(x)
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Basic Lattice QCD

• Discrete space-time : Lattice
spacing a UV Cut-off.

• Quark fields ψ(x), ψ̄(x) on
lattice sites.

• Gluon Fields on links : Uµ(x)

• Gauge invariance : Actions
from Closed Wilson loops,
e.g., plaquette.

• Fermion Actions : Staggered,
Wilson, Overlap, Domain
Wall..
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Lattice QCD Results
• QCD defined on a space time lattice – Best and Most Reliable way to extract

non-perturbative physics: Notable successes are hadron masses( S. Dürr et all, Science

(2008)) & decay constants.
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Lattice QCD Results
• QCD defined on a space time lattice – Best and Most Reliable way to extract

non-perturbative physics: Notable successes are hadron masses( S. Dürr et all, Science

(2008)) & decay constants.
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Banerjee et al

• The Transition Temperature Tc, the Equation of State, Heavy flavour diffusion
coefficient D (Banerjee et al. PRD (2012), Flavour Correlations CBS and the Wróblewski
Parameter λs are some examples for Heavy Ion Physics.
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The µ 6= 0 problem

Physical(thermal expectation) value of an observable O is

〈O〉 =
∫
DU

[
exp(−SG) Det

Nf M(m,µ)
Z

]
O,

where the QCD partition function Z is

Z =
∫
DU exp(−SG) Det

Nf M(m,µ), with Z real & > 0,

and Nf is the number of quark flavours/types.
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The µ 6= 0 problem

Physical(thermal expectation) value of an observable O is

〈O〉 =
∫
DU

[
exp(−SG) Det

Nf M(m,µ)
Z

]
O,

where the QCD partition function Z is

Z =
∫
DU exp(−SG) Det

Nf M(m,µ), with Z real & > 0,

and Nf is the number of quark flavours/types.

Typically 8-9 million dimensional integral and M is million × million. Probabilistic
methods are therefore used to evaluate 〈O〉.

=⇒ Simulations can be done IF DetNf M > 0 for any set of {U}. However,
Det M is a complex number for all µ 6= 0 : The Phase/sign problem
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Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the
usual T 6= 0 simulations. Still scope for a good/great idea !
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Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the
usual T 6= 0 simulations. Still scope for a good/great idea !

• A partial list :

– Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ).
– Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.

D’Elia PR D67 (2003) 014505 ).
– Taylor Expansion (R.V. Gavai and S. Gupta, PR D68 (2003) 034506 ; C. Allton et al., PR D68 (2003) 014507 ).
– Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006)

167.)
– Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work ).
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Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the
usual T 6= 0 simulations. Still scope for a good/great idea !

• A partial list :

– Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ).
– Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.

D’Elia PR D67 (2003) 014505 ).
– Taylor Expansion (R.V. Gavai and S. Gupta, PR D68 (2003) 034506 ; C. Allton et al., PR D68 (2003) 014507 ).
– Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006)

167.)
– Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work ).

• Why Taylor series expansion? — i) Ease of taking continuum and
thermodynamic limit & ii) Better control of systematic errors.
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First Glimpse of QCD Critical Point

Z. Fodor & S. Katz, JHEP ’02 & ’04 used re-weighting to obtain Critical Point
on coarse (Nt = 4) lattices using different volumes & pion masses.
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First Glimpse of QCD Critical Point

Z. Fodor & S. Katz, JHEP ’02 & ’04 used re-weighting to obtain Critical Point
on coarse (Nt = 4) lattices using different volumes & pion masses.

Larger Nt or Continuum limit ?
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QCD Critical Point : Taylor Expansion

• Note that 1) Specific Heat/Susceptibility diverges as one approaches critical
point and 2) a series 1 + x+ x2 + x3.... = 1/(1− x), only if x < 1, it diverges
otherwise.

• Employ Taylor expansion of baryonic susceptibility χB(µ, T ) in z = µ/T , and
look for its radius of convergence to obtain the nearest critical point.
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QCD Critical Point : Taylor Expansion

• Note that 1) Specific Heat/Susceptibility diverges as one approaches critical
point and 2) a series 1 + x+ x2 + x3.... = 1/(1− x), only if x < 1, it diverges
otherwise.

• Employ Taylor expansion of baryonic susceptibility χB(µ, T ) in z = µ/T , and
look for its radius of convergence to obtain the nearest critical point.

• Successive estimates for the radius of convergence can be obtained from these

using

√
n(n+1)χ

(n+1)
B

χ
(n+3)
B

or

(
n!

χ
(2)
B

χ
(n+2)
B

)1/n

. We used both definitions and terms up

to 8th order in µ.
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QCD Critical Point : Taylor Expansion

• Note that 1) Specific Heat/Susceptibility diverges as one approaches critical
point and 2) a series 1 + x+ x2 + x3.... = 1/(1− x), only if x < 1, it diverges
otherwise.

• Employ Taylor expansion of baryonic susceptibility χB(µ, T ) in z = µ/T , and
look for its radius of convergence to obtain the nearest critical point.

• Successive estimates for the radius of convergence can be obtained from these

using

√
n(n+1)χ

(n+1)
B

χ
(n+3)
B

or

(
n!

χ
(2)
B

χ
(n+2)
B

)1/n

. We used both definitions and terms up

to 8th order in µ.

• All coefficients of the series must be POSITIVE for the critical point to be at
real µ, and thus physical.
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• TE

Tc
= 0.94± 0.01, and

µEB
TE

= 1.8± 0.2(1.8± 0.1) for the Nt = 8(6) lattice
(Datta-RVG-Gupta, ’08, ’13, ’17). Recent high statistics coarser (Nt = 4) lattice result was
µEB/T

E = 1.5± 0.2 (Gupta-Karthik-Majumdar PRD ’14).

• Critical point at µB/T ∼ 1− 2, based on results from TIFR(’05, ’08, ’13, ’17) &
Budapest-Wuppertal (’04) groups.
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Searching Experimentally: Heavy Ion Collisions

STAR Collaboration, Aggarwal et al.

arXiv : 1007.2637

• Exploit the facts i)
susceptibilities diverge near
the critical point and ii)
decreasing

√
s increases µB

(Rajagopal, Shuryak & Stephanov PRD 1999).
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Searching Experimentally: Heavy Ion Collisions

STAR Collaboration, Aggarwal et al.

arXiv : 1007.2637

• Exploit the facts i)
susceptibilities diverge near
the critical point and ii)
decreasing

√
s increases µB

(Rajagopal, Shuryak & Stephanov PRD 1999).

• Look for nonmonotonic
dependence of the event-
by-event fluctuations with
colliding energy. No indications
in early such results for π,
K-mesons. E.g., CERN NA49
results (C. Roland NA49, J.Phys. G30 (2004)

S1381-S1384 ).
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Lattice predictions along the freezeout curve

• Hadron yields well described using Statistical Hadronization Models, leading to
the freezeout curve in the T -µB plane. (Andronic, Braun-Munzinger & Stachel, PLB 2009 ; Oeschler,

Cleymans, Redlich & Wheaton, 2009)
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• Plotting these results in the T -µB plane, one has the freezeout curve, which
was shown to correspond the 〈E〉/〈N〉 ' 1. (Cleymans and Redlich, PRL 1998)
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(From Braun-Munzinger, Redlich and Stachel nucl-th/0304013)
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(From Braun-Munzinger, Redlich and Stachel nucl-th/0304013)

• Note : Freeze-out curve is based solely on data on hadron yields, & gives the
(T, µ) accessible in heavy-ion experiments.

• Our Key Proposal : Use the freezeout curve from hadron abundances to
predict baryon fluctuations using lattice QCD along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv

1001.3796)
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• Use the freezeout curve to relate (T, µB)to
√
s and employ lattice QCD

predictions along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)

• Define m1 = Tχ(3)(T,µB)

χ(2)(T,µB)
, m3 = Tχ(4)(T,µB)

χ(3)(T,µB)
, and m2 = m1m3 and use the Padè

method to construct them.
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♠ Used Tc(µ = 0) = 170 MeV (Gavai & Gupta, arXiv: 1001.3796).
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• Smooth & monotonic behaviour for large
√
s : m1 ↓, m3 ↑, and m2 ∼ constant.

• Note that even in this smooth region, an experimental comparison is exciting :
Direct Non-Perturbative test of QCD in hot and dense environment.

Light Cone 2017, University of Mumbai, Mumbai, September 19, 2017 R. V. Gavai Top 29



Sσ ≡ m1

Aggarwal et al., STAR Collaboration, arXiv : 1004.4959

• Reasonable agreement with our lattice results. Where is the critical point ?
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• Our estimated critical point suggests non-monotonic behaviour in all mi, which
should be accessible to the low energy scan of RHIC BNL !

• Caution : Experiments measure only proton number fluctuations.
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• Our estimated critical point suggests non-monotonic behaviour in all mi, which
should be accessible to the low energy scan of RHIC BNL !

• Caution : Experiments measure only proton number fluctuations.

• In the vicinity of a critical point Proton number fluctuations may
suffice.(Hatta-Stephenov, PRL 2003)

• Neat idea : Since diverging baryonic susceptibility at the critical point is linked
to σ mode, which cannot mix with any isospin modes, expect χI to be regular.
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• Our estimated critical point suggests non-monotonic behaviour in all mi, which
should be accessible to the low energy scan of RHIC BNL !

• Caution : Experiments measure only proton number fluctuations.

• In the vicinity of a critical point Proton number fluctuations may
suffice.(Hatta-Stephenov, PRL 2003)

• Neat idea : Since diverging baryonic susceptibility at the critical point is linked
to σ mode, which cannot mix with any isospin modes, expect χI to be regular.

• Leads to a ratio χQ:χI:χB = 1:0:4

• Assuming protons, neutrons, pions to dominate, both χQ and χB can be shown
to be fully reflected in proton number fluctuations.
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Sσ ≡ m1 and κσ2 ≡ m2.
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Sσ ≡ m1 and κσ2 ≡ m2.

“These observables show a centrality and energy dependence, which are neither
reproduced by non-CP transport model calculations, nor by a hadron resonance
gas model. ” — STAR Collaboration PRL (2014).
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Increasing ∆pT deepens the structure !

X. Luo, CPOD 2014, Bielefeld, STAR Collab.
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Increasing ∆pT deepens the structure !

X. Luo, CPOD 2014, Bielefeld, STAR Collab.

Interesting Oscillations !!

X. Luo, Quark Matter 2015,
Kobe, Japan
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Summary

• Phase diagram in T − µ has begun to
emerge: Different methods,  similar
qualitative picture. Critical Point at
µB/T ∼ 1− 2.

• Our results for Nt = 8 first to begin
the inching towards continuum limit.
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Summary

• Phase diagram in T − µ has begun to
emerge: Different methods,  similar
qualitative picture. Critical Point at
µB/T ∼ 1− 2.

• Our results for Nt = 8 first to begin
the inching towards continuum limit.

• We showed that Critical Point leads
to structures in mi on the Freeze-Out
Curve. Possible Signature ?
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♥ STAR, BNL results appear to agree with our Lattice QCD predictions.
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