An Exciting Odyssey in the Femto-World: QCD Critical Point

Rajiv V. Gavai

T. I. F. R., Mumbai

Importance of Being Critical

Theoretical Results

Searching Experimentally

Summary

Phase Diagram of Water (http://www1.lsbu.ac.uk/)

Phase Diagram of Water (http://www1.lsbu.ac.uk/)

Phase Diagram of Water (http://www1.lsbu.ac.uk/)

- One, possibly two, critical points.
- Extreme density fluctuations

⇒ Critical Opalescence (T.

Andrews, Royal Society 1869).

Phase Diagram of Water (http://www1.lsbu.ac.uk/)

- One, possibly two, critical points.
- Extreme density fluctuations
 ⇒ Critical Opalescence (⊤.
 Andrews, Royal Society 1869).
- SCF dissolves material like liquid but passes through solid like gas.
- Dielectric constant
 & Viscosity ↓.

FIRST ORDER

SECOND ORDER

• Discontinuous ϵ – Nonzero Latent Heat– & finite C_v \rightarrow First order PT.

FIRST ORDER

SECOND ORDER

 \mathbf{T}

- Discontinuous ϵ Nonzero Latent Heat– & finite C_v \rightarrow First order PT.
- Continuous ϵ , & diverging $C_v \to \mathsf{Second}$ order PT.

- In(Finite) Correlation Length at 2nd (1st) Order transition.
- "Cross-over" mere rapid change in ϵ , with maybe a sharp peaked C_v .

Critical Point: The meV Scale

 \uparrow 26 meV using $\hbar=c=k=1\Longrightarrow 1.16 \ \times 10^4 \, ^{\circ} {\rm K} \equiv 1 \ {\rm eV}; \ \ {\rm Picts} \ {\rm From} \ \ {\rm Wikipedia}$

- Supercriticality is likely the cause of natural wonders such as black smokers.
- ♦ Supercritical fluid extraction is recognised as a green technology for production of essence from herbs and plants.

- Supercriticality is likely the cause of natural wonders such as black smokers.
- ♦ Supercritical fluid extraction is recognised as a green technology for production of essence from herbs and plants.

- \heartsuit About a third of hop extraction using supercritical CO₂!
- ♠ Many liquid fueled engines exploit such supercritical transitions.

Strong Interactions

 Molecular Interactions, residual Electromagnetism of atomic constituents, lead to liquid-gas phase transitions.

Strong Interactions

- Molecular Interactions, residual Electromagnetism of atomic constituents, lead to liquid-gas phase transitions.
- Rutherford's Scattering Experiment
 & its successors → discovery
 of various layers, nucleus,
 proton/neutron....

Strong Interactions

- Molecular Interactions, residual Electromagnetism of atomic constituents, lead to liquid-gas phase transitions.
- Rutherford's Scattering Experiment
 & its successors → discovery
 of various layers, nucleus,
 proton/neutron....
- Quarks and Leptons Basic building blocks: Proton (uud), Neutron (udd), Pion $(u\bar{d})$
- A Variety of Vector Bosons : Carriers of forces.

Strengths in a ratio $10^{-39}:10^{-5}:10^{-2}:1$

Strengths in a ratio $10^{-39}:10^{-5}:10^{-2}:1$

(Anti-)Quarks come in three (anti-)colours, making gluons also coloured.

Standard Model's Zoo

Family \rightarrow I II III

The particles and antiparticles of the Standard Model. Image credit: E. Siegel.

Quantum Chromo Dynamics (QCD)

- (Gauge) Theory of interactions of quarks-gluons.
- Similar to structure in theory of electrons & photons (QED).

Quantum Chromo Dynamics (QCD)

- (Gauge) Theory of interactions of quarks-gluons.
- Similar to structure in theory of electrons & photons (QED).
- Many more "photons" (Eight) which carry colour charge & hence interact amongst themselves.
- \bullet Unlike QED, the coupling is usually very large : by ~ 100 .

Quantum Chromo Dynamics (QCD)

- (Gauge) Theory of interactions of quarks-gluons.
- Similar to structure in theory of electrons & photons (QED).
- Many more "photons" (Eight) which carry colour charge & hence interact amongst themselves.
- ullet Unlike QED, the coupling is usually very large : by \sim 100.
- Much richer structure: Quark Confinement, Dynamical Symmetry Breaking...
- Very high interaction (binding) energies. E.g., $M_{Proton} \gg (2m_u + m_d)$, by a factor of $100 \rightarrow$ Understanding it is knowing where the Visible mass of Universe comes from.

 • Spin 1/2 particle of mass $m \Rightarrow S_z = \pm 1/2$. Let z-axis be along its momentum \vec{P}

• Spin 1/2 particle of mass $m \Rightarrow S_z = \pm 1/2$. Let z-axis be along its momentum \vec{P} : A) $[S_z \rightarrow]$ along the momentum $[\vec{P} \Longrightarrow]$

OR

B) Opposite to it, i. e., $[S_z \leftarrow]$ along $[\vec{P} \Longrightarrow] \equiv [S_z \rightarrow]$ along $[\vec{P} \Leftarrow]$.

• Spin 1/2 particle of mass $m \Rightarrow S_z = \pm 1/2$. Let z-axis be along its momentum \vec{P} : A) $[S_z \to]$ along the momentum $[\vec{P} \Longrightarrow]$

OR

- B) Opposite to it, i. e., $[S_z \leftarrow]$ along $[\vec{P} \Longrightarrow] \equiv [S_z \rightarrow]$ along $[\vec{P} \longleftarrow]$.
- Particle in state A can be transformed to state B by a Lorentz transformation along z-axis.
- The particle must come to rest in between : $m \neq 0$.

• Spin 1/2 particle of mass $m \Rightarrow S_z = \pm 1/2$. Let z-axis be along its momentum \vec{P} : A) $[S_z \rightarrow]$ along the momentum $[\vec{P} \Longrightarrow]$

OR.

- B) Opposite to it, i. e., $[S_z \leftarrow]$ along $[\vec{P} \Longrightarrow] \equiv [S_z \rightarrow]$ along $[\vec{P} \longleftarrow]$.
- Particle in state A can be transformed to state B by a Lorentz transformation along z-axis.
- The particle must come to rest in between : $m \neq 0$.
- For (N_f) massless particles, A or B do **not** change into each other: Chiral Symmetry $(SU(N_f) \times SU(N_f))$.

- Interactions can break the chiral symmetry dynamically, leading to effective masses for these particles.
- Light pions (m_{π} =0.14 GeV) and heavy baryons (protons/neutrons; m_N =0.94 GeV) arise this way (Y. Nambu, Physics Nobel Prize 2008).

- Interactions can break the chiral symmetry dynamically, leading to effective masses for these particles.
- Light pions (m_{π} =0.14 GeV) and heavy baryons (protons/neutrons; m_N =0.94 GeV) arise this way (Y. Nambu, Physics Nobel Prize 2008).
- Chiral symmetry may get restored at sufficiently high temperatures or densities.
 Effective mass then 'melts' away, just as magnet loses its magnetic properties on heating.
- New States at High Temperatures/Density expected on basis of models.

- Interactions can break the chiral symmetry dynamically, leading to effective masses for these particles.
- Light pions (m_{π} =0.14 GeV) and heavy baryons (protons/neutrons; m_N =0.94 GeV) arise this way (Y. Nambu, Physics Nobel Prize 2008).
- Chiral symmetry **may** get restored at sufficiently high temperatures or densities. Effective mass then 'melts' away, just as magnet loses its magnetic properties on heating.
- New States at High Temperatures/Density expected on basis of models.
- Quark-Gluon Plasma is such a phase. It presumably filled our Universe a few microseconds after the Big Bang & can be produced in Relativistic Heavy Ion Collisions.

- Interactions can break the chiral symmetry dynamically, leading to effective masses for these particles.
- Light pions (m_{π} =0.14 GeV) and heavy baryons (protons/neutrons; m_N =0.94 GeV) arise this way (Y. Nambu, Physics Nobel Prize 2008).
- Chiral symmetry **may** get restored at sufficiently high temperatures or densities. Effective mass then 'melts' away, just as magnet loses its magnetic properties on heating.
- New States at High Temperatures/Density expected on basis of models.
- Quark-Gluon Plasma is such a phase. It presumably filled our Universe a few microseconds after the Big Bang & can be produced in Relativistic Heavy Ion Collisions. QCD Critical Point arises also due to Chiral Symmetry.
- Ideally, QCD should shed light on its richer structure: Quark Confinement, Dynamical Symmetry Breaking.. But Models did that first.

 \spadesuit A fundamental aspect – Critical Point in T- μ_B plane;

 \spadesuit A fundamental aspect – Critical Point in T- μ_B plane; Based on symmetries and models, expected QCD Phase Diagram

From Rajagopal-Wilczek Review, hep-ph/0011333

 \spadesuit A fundamental aspect – Critical Point in T- μ_B plane; Based on symmetries and models, expected QCD Phase Diagram ... but could, however, be ...

From Rajagopal-Wilczek Review, hep-ph/0011333

 \spadesuit A fundamental aspect – Critical Point in T- μ_B plane; Based on symmetries and models, expected QCD Phase Diagram ... but could, however, be ... (McLerran-

Pisarski 2007; Castorina-RVG-Satz 2010)

From Rajagopal-Wilczek Review, hep-ph/0011333

Putting QCD to Work

- QCD Partition Function : $Z_{QCD} = \text{Tr } \exp[-(H_{QCD} \mu_B N_B)/T]$.
- A first-principles calculation of $\epsilon(\mu,T)$ or $P(\mu,T)$ to look for phase transitions, Critical Point and many phases using the underlying theory QCD alone: NO free parameters and NO arbitrary assumptions.

Putting QCD to Work

- QCD Partition Function : $Z_{QCD} = \text{Tr } \exp[-(H_{QCD} \mu_B N_B)/T]$.
- A first-principles calculation of $\epsilon(\mu,T)$ or $P(\mu,T)$ to look for phase transitions, Critical Point and many phases using the underlying theory QCD alone: NO free parameters and NO arbitrary assumptions.
- Price to pay : Functional integrations have to be done over quark and gluon fields : $\int dx \ F(x) \rightarrow \int \mathcal{D}\phi \ \mathcal{F}[\phi(x)]$.

Putting QCD to Work

- QCD Partition Function : $Z_{QCD} = \text{Tr } \exp[-(H_{QCD} \mu_B N_B)/T]$.
- A first-principles calculation of $\epsilon(\mu,T)$ or $P(\mu,T)$ to look for phase transitions, Critical Point and many phases using the underlying theory QCD alone: NO free parameters and NO arbitrary assumptions.
- Price to pay: Functional integrations have to be done over quark and gluon fields: $\int dx \ F(x) \to \int \mathcal{D}\phi \ \mathcal{F}[\phi(x)].$
- Simpson integration trick : $\int dx \ F(x) = \lim_{\Delta x \to 0} \sum_i \ \Delta x \ F(x_i)$.
- Its analogue to perform functional integrations needs discretizing the space-time on which the fields are defined : Lattice Field Theory !

Basic Lattice QCD

• Discrete space-time : Lattice spacing *a* UV Cut-off.

• Quark fields $\psi(x)$, $\bar{\psi}(x)$ on lattice sites.

• Gluon Fields on links : $U_{\mu}(x)$

Basic Lattice QCD

u

- Discrete space-time : Lattice spacing *a* UV Cut-off.
- \times \times \times \times \times
- Quark fields $\psi(x)$, $\bar{\psi}(x)$ on lattice sites.
- × × × ×
- Gluon Fields on links : $U_{\mu}(x)$
- \times \times \times \times \times
- Gauge invariance : Actions A from Closed Wilson loops, e.g., plaquette.
- Fermion Actions : Staggered,
 Wilson, Overlap, Domain
 Wall..

Lattice QCD Results

• QCD defined on a space time lattice — Best and Most Reliable way to extract non-perturbative physics: Notable successes are hadron masses (S. Dürr et all, Science (2008)) & decay constants.

Lattice QCD Results

• QCD defined on a space time lattice — Best and Most Reliable way to extract non-perturbative physics: Notable successes are hadron masses(S. Dürr et all, Science

18

(2008)) & decay constants.

• The Transition Temperature T_c , the Equation of State, Heavy flavour diffusion coefficient D (Banerjee et al. PRD (2012), Flavour Correlations C_{BS} and the Wróblewski Parameter λ_s are some examples for Heavy Ion Physics.

The $\mu \neq 0$ problem

Physical(thermal expectation) value of an observable $\mathcal O$ is

$$\langle \mathcal{O} \rangle = \int DU \left[\frac{\exp(-S_G) \operatorname{Det}^{N_f} M(m,\mu)}{\mathcal{Z}} \right] \mathcal{O},$$

where the QCD partition function $\mathcal Z$ is

$$\mathcal{Z} = \int DU \exp(-S_G) \operatorname{Det}^{N_f} M(m,\mu)$$
, with \mathcal{Z} real & > 0 ,

and N_f is the number of quark flavours/types.

The $\mu \neq 0$ problem

Physical(thermal expectation) value of an observable $\mathcal O$ is

$$\langle \mathcal{O} \rangle = \int DU \left[\frac{\exp(-S_G) \operatorname{Det}^{N_f} M(m,\mu)}{\mathcal{Z}} \right] \mathcal{O},$$

where the QCD partition function $\mathcal Z$ is

$$\mathcal{Z} = \int DU \exp(-S_G) \operatorname{Det}^{N_f} M(m,\mu)$$
, with \mathcal{Z} real & > 0 ,

and N_f is the number of quark flavours/types.

Typically 8-9 million dimensional integral and M is million \times million. Probabilistic methods are therefore used to evaluate $\langle \mathcal{O} \rangle$.

 \Longrightarrow Simulations can be done IF $\operatorname{Det}^{N_f} M > 0$ for any set of $\{U\}$. However, $\operatorname{Det} M$ is a complex number for all $\mu \neq 0$: The Phase/sign problem

Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the usual $T \neq 0$ simulations. Still scope for a good/great idea !

Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the usual $T \neq 0$ simulations. Still scope for a good/great idea !

A partial list :

- Two parameter Re-weighting (z. Fodor & S. Katz, JHEP 0203 (2002) 014).
- Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.
 D'Elia PR D67 (2003) 014505).
- Taylor Expansion (R.V. Gavai and S. Gupta, PR D68 (2003) 034506; C. Allton et al., PR D68 (2003) 014507).
- Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006) 167.)
- Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work).

Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the usual $T \neq 0$ simulations. Still scope for a good/great idea !

- A partial list :
 - Two parameter Re-weighting (z. Fodor & S. Katz, JHEP 0203 (2002) 014).
 - Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M. D'Elia PR D67 (2003) 014505).
 - Taylor Expansion (R.V. Gavai and S. Gupta, PR D68 (2003) 034506; C. Allton et al., PR D68 (2003) 014507).
 - Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006) 167.)
 - Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work).
- Why Taylor series expansion? i) Ease of taking continuum and thermodynamic limit & ii) Better control of systematic errors.

First Glimpse of QCD Critical Point

Z. Fodor & S. Katz, JHEP '02 & '04 used re-weighting to obtain Critical Point on coarse $(N_t=4)$ lattices using different volumes & pion masses.

First Glimpse of QCD Critical Point

Z. Fodor & S. Katz, JHEP '02 & '04 used re-weighting to obtain Critical Point on coarse $(N_t=4)$ lattices using different volumes & pion masses.

Larger N_t or Continuum limit ?

QCD Critical Point: Taylor Expansion

- Note that 1) Specific Heat/Susceptibility diverges as one approaches critical point and 2) a series $1 + x + x^2 + x^3 \dots = 1/(1-x)$, only if x < 1, it diverges otherwise.
- Employ Taylor expansion of baryonic susceptibility $\chi_B(\mu,T)$ in $z=\mu/T$, and look for its radius of convergence to obtain the nearest critical point.

QCD Critical Point: Taylor Expansion

- Note that 1) Specific Heat/Susceptibility diverges as one approaches critical point and 2) a series $1 + x + x^2 + x^3 \dots = 1/(1-x)$, only if x < 1, it diverges otherwise.
- Employ Taylor expansion of baryonic susceptibility $\chi_B(\mu,T)$ in $z=\mu/T$, and look for its radius of convergence to obtain the nearest critical point.
- Successive estimates for the radius of convergence can be obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}}\right)^{1/n}$. We used both definitions and terms up to 8th order in μ .

QCD Critical Point: Taylor Expansion

- Note that 1) Specific Heat/Susceptibility diverges as one approaches critical point and 2) a series $1 + x + x^2 + x^3 \dots = 1/(1-x)$, only if x < 1, it diverges otherwise.
- Employ Taylor expansion of baryonic susceptibility $\chi_B(\mu,T)$ in $z=\mu/T$, and look for its radius of convergence to obtain the nearest critical point.
- Successive estimates for the radius of convergence can be obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}}\right)^{1/n}$. We used both definitions and terms up to 8th order in μ .
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.

- $\frac{T^E}{T_c}=0.94\pm0.01$, and $\frac{\mu_B^E}{T^E}=1.8\pm0.2(1.8\pm0.1)$ for the $N_t=8(6)$ lattice (Datta-RVG-Gupta, '08, '13, '17). Recent high statistics coarser ($N_t=4$) lattice result was $\mu_B^E/T^E=1.5\pm0.2$ (Gupta-Karthik-Majumdar PRD '14).
- Critical point at $\mu_B/T \sim 1-2$, based on results from TIFR_('05, '08, '13, '17) & Budapest-Wuppertal _('04) groups.

Searching Experimentally: Heavy Ion Collisions

• Exploit the facts i) susceptibilities diverge near the critical point and ii) decreasing \sqrt{s} increases μ_B (Rajagopal, Shuryak & Stephanov PRD 1999).

STAR Collaboration, Aggarwal et al.

arXiv: 1007.2637

Searching Experimentally: Heavy Ion Collisions

STAR Collaboration, Aggarwal et al.

arXiv: 1007.2637

- Exploit the facts i) susceptibilities diverge near the critical point and ii) decreasing \sqrt{s} increases μ_B (Rajagopal, Shuryak & Stephanov PRD 1999).
- Look for nonmonotonic dependence of the event-by-event fluctuations with colliding energy. No indications in early such results for π , K-mesons. E.g., CERN NA49 results (c. Roland NA49, J.Phys. G30 (2004) S1381-S1384).

Lattice predictions along the freezeout curve

• Hadron yields well described using Statistical Hadronization Models, leading to the freezeout curve in the T- μ_B plane. (Andronic, Braun-Munzinger & Stachel, PLB 2009; Oeschler,

Cleymans, Redlich & Wheaton, 2009)

Lattice predictions along the freezeout curve

• Hadron yields well described using Statistical Hadronization Models, leading to the freezeout curve in the T- μ_B plane. (Andronic, Braun-Munzinger & Stachel, PLB 2009; Oeschler, Cleymans, Redlich & Wheaton, 2009)

• Plotting these results in the T- μ_B plane, one has the freezeout curve, which was shown to correspond the $\langle E \rangle/\langle N \rangle \simeq 1$. (Cleymans and Redlich, PRL 1998)

(From Braun-Munzinger, Redlich and Stachel nucl-th/0304013)

- Note : Freeze-out curve is based solely on data on hadron yields, & gives the (T,μ) accessible in heavy-ion experiments.
- Our Key Proposal : Use the freezeout curve from hadron abundances to predict baryon fluctuations using lattice QCD along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)

- Use the freezeout curve to relate (T,μ_B) to \sqrt{s} and employ lattice QCD predictions along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)
- Define $m_1 = \frac{T\chi^{(3)}(T,\mu_B)}{\chi^{(2)}(T,\mu_B)}$, $m_3 = \frac{T\chi^{(4)}(T,\mu_B)}{\chi^{(3)}(T,\mu_B)}$, and $m_2 = m_1 m_3$ and use the Padè method to construct them.

• Used $T_c(\mu = 0) = 170$ MeV (Gavai & Gupta, arXiv: 1001.3796).

Gavai-Gupta, '10 & Datta-Gavai-Gupta, Lattice 2013

- Smooth & monotonic behaviour for large \sqrt{s} : $m_1 \downarrow$, $m_3 \uparrow$, and $m_2 \sim$ constant.
- Note that even in this smooth region, an experimental comparison is exciting:
 Direct Non-Perturbative test of QCD in hot and dense environment.

$$S\sigma \equiv m_1$$

Aggarwal et al., STAR Collaboration, arXiv: 1004.4959

Reasonable agreement with our lattice results. Where is the critical point?

- Our estimated critical point suggests non-monotonic behaviour in all m_i , which should be accessible to the low energy scan of RHIC BNL!
- Caution : Experiments measure *only* proton number fluctuations.

- Our estimated critical point suggests non-monotonic behaviour in all m_i , which should be accessible to the low energy scan of RHIC BNL!
- Caution : Experiments measure *only* proton number fluctuations.
- In the vicinity of a critical point Proton number fluctuations may suffice. (Hatta-Stephenov, PRL 2003)
- Neat idea : Since diverging baryonic susceptibility at the critical point is linked to σ mode, which cannot mix with any isospin modes, expect χ_I to be regular.

- Our estimated critical point suggests non-monotonic behaviour in all m_i , which should be accessible to the low energy scan of RHIC BNL!
- Caution : Experiments measure *only* proton number fluctuations.
- In the vicinity of a critical point Proton number fluctuations may suffice. (Hatta-Stephenov, PRL 2003)
- Neat idea : Since diverging baryonic susceptibility at the critical point is linked to σ mode, which cannot mix with any isospin modes, expect χ_I to be regular.
- Leads to a ratio $\chi_Q:\chi_I:\chi_B=1:0:4$
- Assuming protons, neutrons, pions to dominate, both χ_Q and χ_B can be shown to be fully reflected in proton number fluctuations.

 $S\sigma \equiv m_1$ and $\kappa\sigma^2 \equiv m_2$.

 $S\sigma \equiv m_1$ and $\kappa\sigma^2 \equiv m_2$.

"These observables show a centrality and energy dependence, which are neither reproduced by non-CP transport model calculations, nor by a hadron resonance gas model. " — STAR Collaboration PRL (2014).

Increasing Δp_T deepens the structure ! X. Luo, CPOD 2014, Bielefeld, STAR Collab.

Increasing Δp_T deepens the structure ! X. Luo, CPOD 2014, Bielefeld, STAR Collab.

Interesting Oscillations !!

X. Luo, Quark Matter 2015, Kobe, Japan

Summary

- Phase diagram in $T-\mu$ has begun to emerge: Different methods, \leadsto similar qualitative picture. Critical Point at $\mu_B/T\sim 1-2$.
- Our results for $N_t = 8$ first to begin the inching towards continuum limit.

Summary

- Phase diagram in $T-\mu$ has begun to emerge: Different methods, \leadsto similar qualitative picture. Critical Point at $\mu_B/T \sim 1-2$.
- Our results for $N_t = 8$ first to begin $\stackrel{\circ}{\triangleright}$ 0.9 the inching towards continuum limit.
- We showed that Critical Point leads to structures in m_i on the Freeze-Out Curve. Possible Signature ?

 \heartsuit STAR, BNL results appear to agree with our Lattice QCD predictions. \bigcirc