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Introduction

• spin asymmetries are observed at the angular 
distribution of the final hadron.

• spin asymmetries            non-vanishing 
transverse momentum of the partons

• SIDIS: factorizes into TMDs and 
fragmentation functions

II. AZIMUTHAL ASYMMETRIES IN SIDIS

In the QCD factorization scheme the Semi-Inclusive Deep Inelastic Scattering(SIDIS) cross-
section for the one photon exchange process !N → !′hX is written as

dσ!N→!′hX =
∑

ν

f̂ν/P (x, p⊥; Q2) ⊗ dσ̂!q→!q ⊗ D̂h/ν(z, k⊥; Q2); (1)

where the first term represents the transverse momentum dependent parton distribution func-
tions(TMDs) which provides the probability of having a struck quarks of a particular polar-
ization in a nucleon, the second term represents the hard scattering which is a point like QED
scattering mediated by a virtual photon and the third term is for fragmentation functions(FFs)
which gives information about hadronizations fragmented from a quark. Such a scheme holds
in small Ph⊥ and large Q region, P 2

h⊥ # Λ2
QCD $ Q2. At large Ph⊥ quark-gluon corrections and

higher order pQCD corrections become important[10–12]. The TMD factorization theorem is
not proven generically for all the process. However, a proof of the TMD fctorization is presented
for the SIDIS and the DY processes in [13, 14] and latter on used in [15–18]. The kinematics of
SIDIS is given in Fig.1. In the γ∗ −N center of mass frame, the kinematic variables are defined
as

x = Q2

2(P.q) = xB y = P.q

P.!
= Q2

sx
z = P.Ph

P.q
= zh. (2)

In this frame, struck quark and diquark have equal and opposite transverse momentum and
produced hadron gets a non-zero transverse momentum. Thus, momentum of the incoming pro-
ton P ≡ (P +, M2

P + , 0⊥) and of the virtual photon q ≡ (xBP +, Q2

xBP + , 0⊥). Where xB = Q2

2P.q is the
Bjorken scaling with Q2 = −q2. The struck quark of momentum p ≡ (xP +, p2+|p⊥|2

xP + , p⊥) interact
with the virtual photon and the diquark carries a momentum pD ≡ ((1 − x)P +, p2+|p⊥|2

(1−x)P + , −p⊥).
The produced hadron carries a momentum Ph ≡ (P +, P −, Ph⊥). We use the light-cone conven-
tion x± = x0 ± x3. The fractional energy transferred by the photon in the lab system is y and
the energy fraction carried by the produced hadron is z = P−

h /k−. In this frame, though the
incoming proton dose not have transverse momentum, the constituent quarks can have non-
zero transverse momenta which sum up to zero. p⊥, k⊥ and Ph⊥ are the transverse momentum
carried by struck quark, fragmenting quark and fragmented hadron respectively. The relation
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I. INTRODUCTION

Experiments with inclusive deep inelastic scattering
(DIS) processes, ‘N ! ‘0X, have been performed for dec-
ades and have been interpreted as the most common way to
investigate the internal structure of protons and neutrons.
At large energy and momentum transfer the leptons inter-
act with the nucleon constituents; by detecting the angle
and the energy of the scattered lepton one obtains infor-
mation on the partonic content of the nucleons. This infor-
mation is encoded in the parton distribution functions
(PDFs) which give the number density of partons moving
collinearly with the nucleon and carrying a fraction x of its
momentum at a certain value of the squared momentum
transfer Q2. The prediction of the Q2 dependence of the
PDFs has been one of the great successes of pQCD.
Although successful, such an approach only offers infor-
mation on the longitudinal degrees of freedom of quarks
and gluons, giving no information on the transverse mo-
tion, which is integrated over. This transverse motion—
transverse with respect to the parent nucleon direction—is
related to intrinsic properties of the partons, like orbital
motion, and reveals new aspects of the nucleon structure.

In the last years, driven by unexpected spin effects and
azimuthal dependences, the study of the intrinsic motion of
partons has made enormous progress; indeed, a new phase
in the exploration of the proton and neutron composition
has begun. The leading role in such an effort is played by
semi-inclusive deep inelastic scattering (SIDIS) processes,
‘N ! ‘0hX, in which, in addition to the scattered lepton,
also a final hadron is detected; this hadron is generated in

the fragmentation of the scattered quark (or gluon)—the
so-called current fragmentation region—and, as such,
yields some new information on the parton primordial
motion. This new information is encoded in the so-called
transverse momentum dependent partonic distribution
and fragmentation functions (TMD-PDFs and TMD-FFs,
or, shortly, TMDs), f̂a=pðx; k?Þ and D̂h=aðz;p?Þ. The
TMD-PDFs give the number density of quarks (a ¼ q),
antiquarks (a ¼ !q) or gluons (a ¼ g) with light-cone mo-
mentum fraction x and transverse momentum k? inside a
fast moving proton; the TMD-FFs give the number density
of hadrons h resulting in the fragmentation of parton a,
with a light-cone momentum fraction z and a transverse
momentum p?, relative to the original parton motion. At
leading twist, taking into account the parton and the nu-
cleon spins, there are eight independent TMD-PDFs [1,2];
if the final hadron is unpolarized or spinless, say a pion,
there are two TMD-FFs. All these quantities combine into
physical observables and by gathering information about
them one accesses the momentum distribution of partons
inside the nucleons.
The theoretical framework used to analyze the experi-

mental data is the QCD factorization scheme, according to
which the SIDIS cross section is written as a convolution of
TMDs and elementary interactions:

d!‘p!‘0hX

¼
X

q

f̂q=pðx; k?;Q2Þ & d!̂‘q!‘q & D̂h=qðz;p?;Q
2Þ:

(1)
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• The azimuthal asymmetry

• asymmetries can be written as convolutions of 
TMDs and fragmentation functions(FFs).

• In cross-section, each structure function comes 
with a definite angular coeff.  contribution of a 
single TMD can be extracted  by introducing 
corresponding weight-factor.

of TMDs and FFs as[19]

FUU = C[f ν
1 Dh/ν

1 ], (6)

sin 2φhF sin 2φh
UL = sin 2φhC

[
(Ph⊥.p⊥) − 2z(P̂h⊥.p⊥)2 + zp2

⊥
zMhM

h⊥ν
1L H⊥ν

1

]

, (7)

sin φhF sin φh
UL = sin φh(−2

Q
)C

[
p2

⊥(Ph⊥ − zP̂h⊥.p⊥)
zMhM

h⊥ν
1L H⊥ν

1

]

, (8)

sin(φh + φS)F sin(φh+φS)
UT = sin(φh + φS)C

[
Ph⊥ − z(P̂h⊥.p⊥)

zMh
hν

1H⊥ν
1

]

, (9)

sin(3φh − φS)F sin(3φh−φS)
UT = sin(3φh − φS)C

[

p2
⊥

(
−Ph⊥ + 2Ph⊥(P̂h⊥.p̂⊥)2

2zMhM2

−zp⊥[4(P̂h⊥.p̂⊥)3 + 3(P̂h⊥.p̂⊥)]
2zMhM2

)

h⊥ν
1T H⊥ν

1

]

, (10)

and the structure functions contributing to the DSAs are given by

FLL = C[gν
1LDh/ν

1 ], (11)

cos φhF cos φh
LL = cos φh

(

− 2
Q

)

C
[

(P̂h⊥.p⊥)gν
1LDh/ν

1

]

, (12)

cos(φh − φS)F cos(φh−φS)
LT = cos(φh − φS)C

[
(P̂h⊥.p⊥)

M
gν

1T Dh/ν
1

]

, (13)

cos φSF cos φS
LT = cos φS

(

− 1
Q

)

C
[

p2
⊥

M
gν

1T Dh/ν
1

]

, (14)

cos(2φh − φS)F cos(2φh−φS)
LT = cos(2φh − φS) 1

Q
C

[
(p2

⊥ − 2(P̂h⊥.p⊥)2)
M

gν
1T Dh/ν

1

]

, (15)

Where, C stands for the convolution as defined in Eq.(5) and f1, h⊥
1L, h1, h⊥

1T , g1L and g1T are
the leading twist T-even TMDs which are functions of x and p⊥. Dh/ν

1 ≡ Dh/ν
1 (z, k⊥) is the

unpolarised FF and H⊥
1 ≡ H⊥

1 (z, k⊥) is the Collins fragmentation function. The contribution
of above structure functions to the azimuthal spin asymmetries are discussed in the following
sections.

In the SIDIS process, asymmetry is observed experimentally during the measurement of
angular distribution of produced hadrons. The azimuthal asymmetries in SIDIS process are
defined as

AS!SP = dσ#(S!)P (SP )→#′hX − dσ#(S!)P (−SP )→#′hX

dσ#(S!)P (SP )→#′hX + dσ#(S!)P (−SP )→#′hX
. (16)
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of structure functions, at kinematic order p⊥/Q, as[19]

dσ!(S!)+P (SP )→!′PhX

dxBdydzd2Ph⊥dφS
= 2α2

sxy2

{
1 + (1 − y)2

2 FUU + (2 − y)
√

1 − y cos φhF cos φh
UU + (1 − y) cos 2φhF cos 2φh

UU

+ SL
P

[

(1 − y) sin 2φhF sin 2φh
UL + (2 − y)

√
1 − y sin φhF sin φh

UL

]

+ SL
P Sz

!

[
1 − (1 − y)2

2 FLL + y
√

1 − y cos φhF cos φh
LL

]

+ ST
P

[
1 + (1 − y)2

2 sin(φh − φS)F sin(φh−φS)
UT

+ (1 − y)
(

sin(φh + φS)F sin(φh+φS)
UT + sin(3φh − φS)F sin(3φh−φS)

UT

)

+ (2 − y)
√

(1 − y)
(

sin φSF sin φS
UT + sin(2φh − φS)F sin(2φh−φS)

UT

)]

+ ST
P Sz

!

[
1 − (1 − y)2

2 cos(φh − φS)F cos(φh−φS)
LT

+ y
√

1 − y

(

cos φSF cos φS
LT + cos(2φh − φS)F cos(2φh−φS)

LT

)]}

(4)

Where S! is the lepton polarization and SL/T
P represent the polarization of proton with longitu-

dinally polarisation(L) and transverse polarisation(T) index at the superscript. The first three
terms(first line) contribute to the unpolarised cross-section and the other terms contribute for
different proton polarizations.

The weighted structure functions, F W(φh,φS)
S!S , are defined as

F W(φh,φS)
S!S = C[W f̂(x, p⊥)D̂(z, k⊥)]

=
∑

ν

e2
ν

∫
d2p⊥d2k⊥δ(2)(Ph⊥ − zp⊥ − k⊥)W(p⊥, Ph⊥)f̂ ν(x, p⊥)D̂ν(z, k⊥), (5)

where f̂ ν(x, p⊥) and D̂ν(z, k⊥) represent leading twist TMDs and FFs respectively. The above
convolution integral is solved assuming Gaussian ansatz for TMDs in several models as well as
in phenomenological extractions [2, 4, 20].

The weighted structure functions contributing to SSAs are written in terms of convolutions
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• at leading twist 8 TMDs:

• 2 fragmentation functions for final unpolarized 
hadrons

fragmentation of an unpolarized quark 

fragmentation of a transversely polarized quark

6 T-even
2  T-odd

I. INTRODUCTION

Azimuthal spin asymmetries in semi-inclusive deep inelastic scattering(SIDIS) have been
observed in many experiments. Measurements of azimuthal asymmetries are important to
understand the transverse structure of the proton. These asymmetries indicate existence of
non-vanishing transverse momentum of interior quarks and collinear picture used for DIS is not
sufficient. SIDIS cross section can be factorized into transverse momentum dependent parton
distributions(TMDs) which contains the information of the distributions of quarks with trans-
verse momentum in the parent proton and the fragmentation functions(FFs) which describe
the hadronizations of the struck quarks into the detected hadrons. At leading twist, there are
eight TMDs and two FFs for unpolarized final hadrons. When the polarization of the final
hadron is not detected, the fragmentation is described by two FFs: chiral-even D1(z, k2

⊥) which
describe the fragmentation of unpolarized hadron from a unpolarized quark, and chiral-odd
H⊥

1 (z, k2
⊥) which is known as Collins function[1], describes a left-right asymmetry in the frag-

mentation of a transversely polarized quark(z is the energy fraction carried by the final hadron
with the transverse momentum k⊥). Out of the eight TMDs, Boer-Mulders and Sivers functions
h⊥

1 (x, p2
⊥) and f⊥

1T (x, p2
⊥) are T-odd. To study the T-odd TMDs, one requires an one gluon final

state interaction which produces a complex phase in the wavefunctions. We do not consider
the spin asymmetries caused by those TMDs here and concentrate only on the azimuthal spin
asymmetries involving T-even TMDs in this article.

Different single and double spin asymmetries observed in the angular distribution of the
detected hadron, give crucial information about the TMDs. The TMD h⊥

1L(x, p2
⊥) being chiral-

odd can only be probed when it couples with chiral-odd Collins function and is accessed in the
single-spin-asymmetry(SSA) AUL with unpolarized lepton and longitudinally polarized target.
Another chiral-odd TMD h1(x, p2

⊥) is accessed in SSA AUT requiring unpolarized lepton and
transversely polarized target. The chiral-even TMD g⊥

1T (x, p2
⊥) describes the probability of

finding a longitudinal quark inside a transversely polarized proton and it can be obtained in
double-spin-asymmetry(DSA) ALT involving longitudinally polarized lepton and transversely
polarized proton.

Many phenomenological models have addressed the spin asymmetries. Most of the model

2
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• chiral odd               couples with chiral odd            
and measured in SSA with unpolarized lepton 
and longitudinally polarized proton:

•  transversity TMD:

• chiral even              accessed in DSA 

AUL ∼ h⊥1L(x, p2⊥)⊗H⊥1 (z, Ph⊥) (1)

AUT ∼ h1(x, p2⊥)⊗H⊥1 (z, Ph⊥) (2)

ALT ∼ g⊥1T (x, p2⊥)⊗H⊥1 (z, Ph⊥) (3)

2

AUL ∼ h⊥1L(x, p2⊥)⊗H⊥1 (z, Ph⊥) (1)
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2
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2

AUL ∼ h⊥1L(x, p2⊥)⊗H⊥1 (z, Ph⊥) (1)

AUT ∼ h1(x, p2⊥)⊗H⊥1 (z, Ph⊥) (2)
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2

AUL ∼ h⊥1L(x, p2⊥)⊗H⊥1 (z, Ph⊥) (1)

AUT ∼ h1(x, p2⊥)⊗H⊥1 (z, Ph⊥) (2)

ALT ∼ g⊥1T (x, p2⊥)⊗D1(z, Ph⊥) (3)

2

We consider the SIDIS for pi+ 
and pi- channels

ψqλΛ(x, p⊥) = N qf(x, p⊥,λ,Λ)φqi (x, p⊥) (1)

ψqλΛ(x, p⊥) = N qf(x, p⊥,λ,Λ)(1 + ie1e28π (p2⊥ +B)gi)φqi (x, p⊥) (2)

AUL ∼ h⊥1L(x, p2⊥)⊗H⊥1 (z, Ph⊥) (3)

AUT ∼ h1(x, p2⊥)⊗H⊥1 (z, Ph⊥) (4)

ALT ∼ g⊥1T (x, p2⊥)⊗D1(z, Ph⊥) (5)

To understand qualititavely, we compare our reselt for collins asymmetry in the three different
schemes(shown in Fig.??):
(i) f ν1 is at µ2 = 2.5 GeV 2 and hν1 is at initial scale µ0,
(ii) both f ν1 and hν1 are at µ2 = 2.5 GeV 2

(iii) both f ν1 and hν1 are at µ2
0.

Interestingly, the scheme-(i) gives better result among these three schemes. The evolution
contribution from hν1 is very small for Collins asymmetry(scheme-(ii)). Note that, in the case
of other asymmetries e.g., Asin(3φh−φS), the scheme-(ii) has a large deviation from the data.
Therefore we evolve the unpolarized TMDs, f ν1 , which is known and contributes to the denom-
inator of the asymmetries and all spin-dependent TMDs whose evolutions are not well known
and are involved in numerators of all the asymmetries are taken at initial scale. Not only this
strategy gives better agreement with data but limits the uncertainty to the numerators of the
asymmetries only. A similar strategy is used in[? ].

2



SIDIS kinematics

between them, at O(p⊥/Q), is given by

k⊥ = Ph⊥ − zp⊥ (3)

Here we consider one photon interaction only. The transverse momentum of produced hadron
makes an azimuthal angle φh with respect to the lepton plane and transverse spin(SP ) of the
proton has an azimuthal angle φS.

FIG. 1: γ∗ − P center of mass frame: produced hadron has a non-zero transverse momentum(Ph⊥) in

this frame and makes an azimuthal angle of φh. The proton spin (S) has an azimuthal angle of φS .

All kinematics are given in text.

In the generel helicity decomposition, the polarized SIDIS cross-section is written in terms
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The model

• Light-front quark-diquark model considering 
both scalar and axial vecor diquarks:

•

A. TMDs in LFQDM

In this subsection we briefly discuss about calculation of leading twist T-even TMDs in the
recently proposed model LFQDM[8]. In this model,the proton state is written as two particle
bound state of a quark and a diquark having a spin-flavor SU(4) structure.

|P ; ±〉 = CS|u S0〉± + CV |u A0〉± + CV V |d A1〉±. (18)

Where | u S0〉, |u A0〉 and |u A0〉 are two particle states having isoscalar-scalar, isoscalar-
sxialvector and isovector-axialvector diquark respectively[10, 21]. The states are written in
two particle Fock state expansion with Jz = ±1/2 for both the scalar and the axial-vector
diquarks[8]. The two particle fock state wave functions are adopted from soft-wall AdS/QCD
prediction [22, 23] and modified as

ϕ(ν)
i (x, p⊥) = 4π

κ

√
log(1/x)

1 − x
xaν

i (1 − x)bν
i exp

[

− δν p2
⊥

2κ2
log(1/x)
(1 − x)2

]

. (19)

We use the AdS/QCD scale parameter κ = 0.4 GeV as determined in [24]. The parameters
aν

i , bν
i and δν are fixed by fitting the Dirac and Pauli form factors. The quarks are assumed to

be massless.
In the light-front formalism, the TMDs correlator at equal light-front time z+ = 0 is defined

for SIDIS as

Φν[Γ](x, p⊥; S) = 1
2

∫ dz−d2zT

2(2π)3 eip.z〈P ; S|ψν(0)ΓW[0,z]ψ
ν(z)|P ; S〉

∣∣∣∣∣∣
z+=0

(20)

for different Dirac structures Γ = γ+, γ+γ5 and iσj+γ5. Where x (x = p+/P +) is the
longitudinal momentum fraction carried by the struck quark of helicity λ. The proton spin
components are S+ = λN

P +

M , S− = λN
P −

M , and ST with helicity λN . In the leading twist,
the TMD correlator is connected with the corresponding TMDs for different Dirac structures as
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= axialvector diquark
(isospin at the superscript)

The model is consistent with the quark counting rule. The parameters are fitted to proton

form factors and unpolarized pdf data. We consider the leading order QCD evolution of the

unpolarized pdf and set the initial scale to µ0 = 0.313 GeV [5, 9]. The model reproduces the

pdf scale evolution upto a very high scale. The helicity distribution g1(x, µ) and transversity

distribution h1(x, µ) are predicted in this model at different scales µ. We can also get numerical

estimation of different physical quantities to match with the available data. We show that the

predictions of tensor and axial charges in this model are in reasonable agreement with the

observed data.

II. DIQUARK MODEL

In the diquark model, we assume that the virtual incoming photon is interacting with a

valence and other two valence quark form a diquark with spin-0 or spin-1. The spin-0 diquarks
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• general form of the LF wavefunctions:

• The two-particle LF wavefunctions are 
adopted from AdS/QCD prediction

[Brodsky and Teramond arXiv:1203.4025]

A. TMDs in LFQDM

In this subsection we briefly discuss about calculation of leading twist T-even TMDs in the
recently proposed model LFQDM[8]. In this model,the proton state is written as two particle
bound state of a quark and a diquark having a spin-flavor SU(4) structure.

|P ; ±〉 = CS|u S0〉± + CV |u A0〉± + CV V |d A1〉±. (18)

Where | u S0〉, |u A0〉 and |u A0〉 are two particle states having isoscalar-scalar, isoscalar-
sxialvector and isovector-axialvector diquark respectively[10, 21]. The states are written in
two particle Fock state expansion with Jz = ±1/2 for both the scalar and the axial-vector
diquarks[8]. The two particle fock state wave functions are adopted from soft-wall AdS/QCD
prediction [22, 23] and modified as

ϕ(ν)
i (x, p⊥) = 4π

κ

√
log(1/x)

1 − x
xaν

i (1 − x)bν
i exp

[

− δν p2
⊥

2κ2
log(1/x)
(1 − x)2

]

. (19)

We use the AdS/QCD scale parameter κ = 0.4 GeV as determined in [24]. The parameters
aν

i , bν
i and δν are fixed by fitting the Dirac and Pauli form factors. The quarks are assumed to

be massless.
In the light-front formalism, the TMDs correlator at equal light-front time z+ = 0 is defined

for SIDIS as

Φν[Γ](x, p⊥; S) = 1
2

∫ dz−d2zT

2(2π)3 eip.z〈P ; S|ψν(0)ΓW[0,z]ψ
ν(z)|P ; S〉

∣∣∣∣∣∣
z+=0

(20)

for different Dirac structures Γ = γ+, γ+γ5 and iσj+γ5. Where x (x = p+/P +) is the
longitudinal momentum fraction carried by the struck quark of helicity λ. The proton spin
components are S+ = λN

P +

M , S− = λN
P −

M , and ST with helicity λN . In the leading twist,
the TMD correlator is connected with the corresponding TMDs for different Dirac structures as
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[T. Maji and DC, PRD 94, 094020]

ψqλΛ(x, p⊥) = N qf(x, p⊥,λ,Λ)φqi (x, p⊥) (1)

AUL ∼ h⊥1L(x, p2⊥)⊗H⊥1 (z, Ph⊥) (2)

AUT ∼ h1(x, p2⊥)⊗H⊥1 (z, Ph⊥) (3)

ALT ∼ g⊥1T (x, p2⊥)⊗D1(z, Ph⊥) (4)

2



scale evolution

• QCD evolution of  unpolarized TMDs and FFs

• parameter evolution  [T. Maji and DC, PRD 94, 094020] 

[Aybat and Rogers, PRD83, 114042]
[Aybat, Collins,Qiu and Rogers, PRD85, 034043]

parameters in the model are fitted to follow 
DGLAP for pdfs, same scale dependence of the 

parameters is used for TMDs 

C. TMD evolutions

The Q2 evolution of unpolarized TMD and unpolarized fragmentations functions are pro-
posed in [15]. An extension of the unpolarized TMD evolution is presented in [16] and provides
a framework to the scale evolution of spin-dependent distributions. The QCD evolution of
TMDs in the coordinate space is defined[15, 18] as

F̃ (x, b⊥; µ) = F̃ (x, b⊥; µ0) exp
(

ln µ

µ0
K̃(b⊥; µ) +

∫ µ

µ0

dµ′

µ′ γF

(
µ′,

µ2

µ′2

))

. (35)

Where F̃ (x, b⊥; µ0) is the TMDs at the initial scale µ0 and the exponential function contains
the QCD evolution of the corresponding TMDs. The function K̃(b⊥; µ) is given by[16]

K̃(b⊥; µ) = K̃(b∗; µb) +
[ ∫ µb

µ

dµ′

µ′ γK(µ′)
]

− gK(bT ), (36)

where,

K̃(b∗; µb) = −αsCF

π
[ln(b2

∗µ
2
b) − ln(4) + 2γE], (37)

b∗(bT ) = bT√
1 + b2

T
b2

max

; µb = C1
b∗(bT ) (38)

at O(αs)[27, 27]. We adopt a particular choice for the constant C1 = 2e−γE [15, 16], with the
Euler constan γE = 0.577 [27]. In the SIDIS, non-perturbative function gK(bT ) is parametrized
[16, 18, 28] as gK(bT ) = 1

2g2b2
T with g2 = 0.68 GeV 2 and bmax = 0.5 GeV −1. This prescription

overestimates the evolution for the Drell-Yan process as discussed in [29]. Using Eq.(36,37, 38)
the evolution Eq.(35) can be written as

F̃ (x, b⊥; µ) = F̃ (x, b⊥; µ0)R̃(µ, µ0, bT ) exp
[

− gK(bT ) ln( µ

µ0
)
]

, (39)

with the kernel

R̃(µ, µ0, bT ) = exp
[

ln µ

µ0

∫ µb

µ

dµ′

µ′ γK(µ′) +
∫ µ

µ0

dµ′

µ′ γF

(
µ′,

µ2

µ′2

)]

. (40)

Here we consider the LO evolution. The anomalous dimensions are given by

γF

(
µ′,

µ2

µ′2

)
= αs(µ′)CF

π

(
3
2 − ln µ2

µ′2

)

, (41)

γK(µ′) = αs(µ′)CF

π
. (42)
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dµ′

µ′ γF

(
µ′,

µ2

µ′2

))

. (35)

Where F̃ (x, b⊥; µ0) is the TMDs at the initial scale µ0 and the exponential function contains
the QCD evolution of the corresponding TMDs. The function K̃(b⊥; µ) is given by[16]

K̃(b⊥; µ) = K̃(b∗; µb) +
[ ∫ µb

µ

dµ′

µ′ γK(µ′)
]

− gK(bT ), (36)

where,

K̃(b∗; µb) = −αsCF

π
[ln(b2

∗µ
2
b) − ln(4) + 2γE], (37)

b∗(bT ) = bT√
1 + b2

T
b2

max

; µb = C1
b∗(bT ) (38)

at O(αs)[27, 27]. We adopt a particular choice for the constant C1 = 2e−γE [15, 16], with the
Euler constan γE = 0.577 [27]. In the SIDIS, non-perturbative function gK(bT ) is parametrized
[16, 18, 28] as gK(bT ) = 1

2g2b2
T with g2 = 0.68 GeV 2 and bmax = 0.5 GeV −1. This prescription

overestimates the evolution for the Drell-Yan process as discussed in [29]. Using Eq.(36,37, 38)
the evolution Eq.(35) can be written as

F̃ (x, b⊥; µ) = F̃ (x, b⊥; µ0)R̃(µ, µ0, bT ) exp
[

− gK(bT ) ln( µ

µ0
)
]

, (39)

with the kernel

R̃(µ, µ0, bT ) = exp
[

ln µ

µ0

∫ µb

µ

dµ′

µ′ γK(µ′) +
∫ µ

µ0

dµ′

µ′ γF

(
µ′,

µ2

µ′2

)]

. (40)

Here we consider the LO evolution. The anomalous dimensions are given by

γF

(
µ′,

µ2

µ′2

)
= αs(µ′)CF

π

(
3
2 − ln µ2

µ′2

)

, (41)

γK(µ′) = αs(µ′)CF

π
. (42)
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TMD evolution in coord space:



• One can adopt the same QCD evolution for 
polarized TMDs to predict the asym.

• for Collins asym, we compare three schemes:

• scheme(i) is found to be the closest to the data!

• We adopt scheme(i), the uncertainty/error is 
limited in the polarized TMDs only.

ψqλΛ(x, p⊥) = N qf(x, p⊥,λ,Λ)φqi (x, p⊥) (1)

AUL ∼ h⊥1L(x, p2⊥)⊗H⊥1 (z, Ph⊥) (2)

AUT ∼ h1(x, p2⊥)⊗H⊥1 (z, Ph⊥) (3)

ALT ∼ g⊥1T (x, p2⊥)⊗D1(z, Ph⊥) (4)

To understand qualititavely, we compare our reselt for collins asymmetry in the three different
schemes(shown in Fig.??):
(i) f ν1 is at µ2 = 2.5 GeV 2 and hν1 is at initial scale µ0,
(ii) both f ν1 and hν1 are at µ2 = 2.5 GeV 2

(iii) both f ν1 and hν1 are at µ2
0.

Interestingly, the scheme-(i) gives better result among these three schemes. The evolution
contribution from hν1 is very small for Collins asymmetry(scheme-(ii)). Note that, in the case
of other asymmetries e.g., Asin(3φh−φS), the scheme-(ii) has a large deviation from the data.
Therefore we evolve the unpolarized TMDs, f ν1 , which is known and contributes to the denom-
inator of the asymmetries and all spin-dependent TMDs whose evolutions are not well known
and are involved in numerators of all the asymmetries are taken at initial scale. Not only this
strategy gives better agreement with data but limits the uncertainty to the numerators of the
asymmetries only. A similar strategy is used in[? ].

2



comparision of the different schemes
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FIG. 4: Model prediction to Collins asymmetry in SIDIS processes are presented and compared with

experimental data by HERMES Collaboration[30]. Upper row and lower row are corresponding to π+

and π− channels. First, second and third column represent the variation of asymmetry with respect to

x, z and Ph⊥. Red continuous lines(yellow error regions) represent the model result when fν
1 is evolved

in QCD evolution[15, 18] at scale µ2 = 2.5 GeV 2. The blue dashed lines represent the model result

when the TMDs are evolved in parameter evolution approach[8]. IN both the cashes, h1 remains at

the initial scale and FFs are taken from the parametrization[4, 9] at µ2 = 2.5 GeV 2.

The kinematical limit for the variables in the HERMES experiment are:

0.023 ≤ x ≤ 0.4, 0.2 ≤ z ≤ 0.7 and 0.1 ≤ y ≤ 0.95 (76)

and in the COMPASS experiment are:

0.003 ≤ x ≤ 0.7, 0.2 ≤ z ≤ 1.0 and 0.1 ≤ y ≤ 0.9 (77)

The model result for the amount of the integrated asymmetries are listed in the table.I for
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asymmetries are functions of                                                     

Where,

ĥν
1(x) =

(

C2
SN ν2

S − C2
A

1
3N ν2

0

)
ln(1/x)

πκ2 T ν
1 (x) (66)

ĥν⊥
1L (x) = −

(

C2
SN ν2

S + C2
A

(1
3N ν2

0 − 2
3N ν2

1
))

2 ln(1/x)
πκ2 T ν

3 (x), (67)

ĥν⊥
1T (x) = −

(

C2
SN ν2

S − C2
A

1
3N ν2

0

)
2 ln(1/x)

πκ2 T ν
2 (x), (68)

N ν
f1 = C2

SN ν2
S + C2

A

(1
3N ν2

0 + 2
3N ν2

1
)

(69)

〈p2
⊥〉x = 1/R(x) = κ2(1 − x)2

δ log(1/x) (70)

〈k2
⊥〉C = M2

h〈k2
⊥〉

M2
h + 〈k2

⊥〉 (71)

〈P 2
h⊥〉C = 〈k2

⊥〉C + z2〈p2
⊥〉x (72)

〈m2
⊥〉 =

[

〈k2
⊥〉〈P 2

h⊥〉 + z2P 2
h⊥〈p2

⊥〉x

]
〈p2

⊥〉x

〈P 2
h⊥〉2 . (73)

〈m̂2
⊥〉 =

[

〈k2
⊥〉C〈P 2

h⊥〉C + z〈p2
⊥〉x(P 2

h⊥ − 〈P 2
h⊥〉C)

]

. (74)

The pre-factor CA represents CV and CV V for u and d quarks respectively.

A. Predictions for COMPASS and HERMES

All the above asymmetries are functions of x, z, Ph⊥, y and scale µ whereas the experimental
measurements of asymmetries provide the variation of the integrated asymmetry with one
variable at a time. Therefore one has to integrate the denominator and numerator separately
over all the other variables except that one variable which is measured in that data. Also to
compare with the experimental data it is needed to keep the x, y, z dependence canceling factors
in the numerator and denominator of asymmetries unchanged.

An amount of integrated asymmetry can be estimated by integrating over all the variables
x, z, Ph⊥ and y in the corresponding kinametical limits i.e.,

ÃW(φh,φS)
S!SP

= 2

∫
dxdzdPh⊥dy

(
∫

dφhdφS[dσ#(S!)P (SP )→#′hX − dσ#(S!)P (−SP )→#′hX ]W(φh, φS)
)

∫
dxdzdPh⊥dy

(
∫

dφhdφS[dσ#(S!)P (SP )→#′hX + dσ#(S!)P (−SP )→#′hX ]
) .(75)
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FIG. 5: Model prediction to Collins asymmetry measured by COMPASS Collaboration[31] for π+ and

π− channels. Red continuous lines(yellow error regions) and blue dashed lines represent the same as

of Fig.4.

both the π+ and π− channels. The experimental data are available only for different values of
kinemetical variables so direct comparision is not possible, the signs of different asymmetries
evaluated in the model are consistent with the data. The amplitude of asymmetries are calcu-
lated following the same strategy i.e., f ν

1 is evolved in QCD evolution at µ2 = 2.5 GeV 2 and
the polarised TMDs involved in the numerator remains at the initial scale.

Channel Ãsin(φh+φS)
UT |HERMES Ãsin(φh+φS)

UT |COMP ASS Ãsin(3φh−φS)
UT Ãsin φh

UL

π+ 0.0236 0.0374 -0.0011 0.0336

π− -0.0364 -0.0534 0.0015 -0.0518

TABLE I: Amount of the inetegrated SSAs in this model, from Eq.(75), for both the π+ and π−

channels. The amplitudes Ãsin(3φh−φS)
UT and Ãsin φh

UT are calculated in HERMES kinematics.
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FIG. 6: Model prediction to the SSA Asin(3φh−φS)
UT for π+(upper row) and π−(lower row) channels.

The first, second and third column represent the x, z and Ph⊥ variations respectively. Red continous

lines(yellow error region) and blue dashed lines represent the model prediction to this SSA when fν
1

is evolved in QCD evolution and in parameter evolution respectively at the scale µ2 = 2.5 GeV 2 . In

both the cashes, h⊥ν
1T are at initial scale and FFs are taken as phenomenological input at the scale

µ2 = 2.5 GeV 2. Data are measured by HERMES[32].

of DGLAP evolution are encoded into the parameters and the TMDs are expected to follow
more like DGLAP evolution in this approach.

Our model predictions to the Collins asymmetry are shown in Fig.4 and compared with the
HERMES data for the kinematics 0.023 ≤ x ≤ 0.4, 0.2 ≤ z ≤ 0.7 and 0.1 ≤ y ≤ 0.95. The
upper row is for π+ and the lower row is for π− production channels. The first, second and
third columns indicate the x, z and Ph⊥ variations of Collins asymmetry respectively. The red
continuous lines represent the model prediction of Collins asymmetry where the f ν

1 is evolved in
QCD evolution given in[15, 18], see Sec.III C. The corresponding error is represented in yellow
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FIG. 7: Model prediction to Asin φh
UL for π+(upper row) and π−(lower row) channels. The first, second

and third column represent the x, z and Ph⊥ variations respectively. The colors and symbols have the

same inpterpretations as in Fig.4. Data are measured by HERMES collaboration[33].

color. The error corridors are coming from the uncertainties in the parameters of TMDs(initial
scale error) and FFs. Error coming from the LFQDM is small, large contributions come from
the uncertainties in the parameters of FFs[4]. The model predicts qualitative beahavior of
the asymmetries and agree with the data within error bar and we expect that when QCD
evolution of all the TMDs and FFs are correctly incorporated, the agreement with the data will
improve. The blue dashed lines represent the model prediction when the TMD f1 is evolved
by parameter evolution approach[8]. Error corridor for blue dashed line is not shown to avoid
clumsiness in the plot. Since a well defined QCD evolution for transversity is not available,
we evolve the unpolarized TMD only and restrict the uncertainty to the numerator of Collins
asymmetry. Using the same strategy in parameter evolution approach we observe a fantastic
agreement to the experimental data(denoted by blue dashed line). The model results of Collins

23



prediction for Electron-Ion co&ider

• EIC: future collider [Ref. A. Deshpande’s talk]

• We predict the Collins asymmetry for EIC 
kinematics at                  and 

B. Prediction for EIC

The upcoming Electron Ion Collider(EIC)[34] is designed to use several existing facilities
to probe both DIS and SIDIS over a wide range of kinematics and beam polarization. It is
expected to provide much deeper insight into the hadron structure. Here we present the model
predictions for the Collins asymmetry for the EIC kenematics. We present our predictions for
the EIC kinematics[35]:

0.001 < x < 0.4, 0.2 < z < 0.8, (78)

0.05 < Ph⊥ < 1, 0.01 < y < 0.95, (79)

at the center of mass energy √
s = 45 GeV. The predictions for the collins asymmetry Asin(Φh+ΦS)

UT

at µ2 = 100 GeV 2 are shown in Fig.8. Note that the future EIC will explore much smaller
values of x as can be seen from the plots. The upper panel in Fig.8 represents the results for
π+ channel while the lower pannel is for π− channel and the asymmetries are predicted to be
sizable in both channels.

V. DOUBLE SPIN ASYMMETRIES IN LFQDM

The double-spin asymmetry is observed when both the lepton beam and the target proton
are polarized and only proton polarization flips. The DSAs associated with the longitudinally
polarised lepton beam is defined as

ALSP = dσ!→P (SP )→!′hX − dσ!→P (SP )→!′hX

dσ!→P (SP )→!′hX + dσ!→P (SP )→!′hX

(80)

Where, the target proton can considered as longitudinally polarised(SL ≡→) or transversely
polarised (ST ≡↑). For longitudinally polarised proton, from Eq.(4), the numerator can be
written in terms of the structure functions as

dσ!→P →→!′hX − dσ!→P ←→!′hX

dxBdydzd2Ph⊥dφS
= 2α2

sxy2 2
[

1 − (1 − y)2

2 FLL + y
√

1 − y cos φhF cos φh
LL

+ (1 − y) sin 2φhF sin 2φh
UL + (2 − y)

√
1 − y sin φhF sin φh

UL

]

. (81)
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B. Prediction for EIC

The upcoming Electron Ion Collider(EIC)[34] is designed to use several existing facilities
to probe both DIS and SIDIS over a wide range of kinematics and beam polarization. It is
expected to provide much deeper insight into the hadron structure. Here we present the model
predictions for the Collins asymmetry for the EIC kenematics. We present our predictions for
the EIC kinematics[35]:

0.001 < x < 0.4, 0.2 < z < 0.8, (78)

0.05 < Ph⊥ < 1, 0.01 < y < 0.95, (79)

at the center of mass energy √
s = 45 GeV. The predictions for the collins asymmetry Asin(Φh+ΦS)

UT

at µ2 = 100 GeV 2 are shown in Fig.8. Note that the future EIC will explore much smaller
values of x as can be seen from the plots. The upper panel in Fig.8 represents the results for
π+ channel while the lower pannel is for π− channel and the asymmetries are predicted to be
sizable in both channels.

V. DOUBLE SPIN ASYMMETRIES IN LFQDM

The double-spin asymmetry is observed when both the lepton beam and the target proton
are polarized and only proton polarization flips. The DSAs associated with the longitudinally
polarised lepton beam is defined as

ALSP = dσ!→P (SP )→!′hX − dσ!→P (SP )→!′hX

dσ!→P (SP )→!′hX + dσ!→P (SP )→!′hX

(80)
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FIG. 8: Prediction for the Collins asymmetry Asin(Φh+ΦS)
UT for EIC kinematics.

are 0.0336 and -0.0518 in π+ and π− channels respectively.
Note that the parameter evolution is a model to reproduce the DGLAP evolution of the

PDFs, but it is found to work well to reproduce the SSAs too. The TMDs are known not to
follow the DGLAP evolution, and the same parameter evolution is not expected to reproduce
their evolutions. But in the SSAs, which involve ratios of different TMDs and fragmentation
functions, it seems to work fine which might be due to partial cancellations of the evolution
effects. Proper QCD evolutions of all the TMDs and FFs are required for more accurate
predictions of the asymmetries at the experimental scales.

25



some remarks:

• Model prediction:               is suppressed by a 
factor of             compared to               and 
expected to be small,                                       
expt result: very close to zero. 

• parameter evolution: follows DGLAP evolution. 
But TMDs don’t follow DGLAP.  SSAs involve 
ratios of TMDs and FFs. Interestingly parameter 
evolution predicts SSAs very well!

• proper QCD evolution for all polarized TMDs 
are required for better predictions!
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FIG. 5: Model prediction to Collins asymmetry measured by COMPASS Collaboration[31] for π+ and

π− channels. Red continuous lines(yellow error regions) and blue dashed lines represent the same as

of Fig.4.

both the π+ and π− channels. The experimental data are available only for different values of
kinemetical variables so direct comparision is not possible, the signs of different asymmetries
evaluated in the model are consistent with the data. The amplitude of asymmetries are calcu-
lated following the same strategy i.e., f ν

1 is evolved in QCD evolution at µ2 = 2.5 GeV 2 and
the polarised TMDs involved in the numerator remains at the initial scale.

Channel Ãsin(φh+φS)
UT |HERMES Ãsin(φh+φS)

UT |COMP ASS Ãsin(3φh−φS)
UT Ãsin φh

UL

π+ 0.0236 0.0374 -0.0011 0.0336

π− -0.0364 -0.0534 0.0015 -0.0518

TABLE I: Amount of the inetegrated SSAs in this model, from Eq.(75), for both the π+ and π−

channels. The amplitudes Ãsin(3φh−φS)
UT and Ãsin φh

UT are calculated in HERMES kinematics.
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FIG. 6: Model prediction to the SSA Asin(3φh−φS)
UT for π+(upper row) and π−(lower row) channels.

The first, second and third column represent the x, z and Ph⊥ variations respectively. Red continous

lines(yellow error region) and blue dashed lines represent the model prediction to this SSA when fν
1

is evolved in QCD evolution and in parameter evolution respectively at the scale µ2 = 2.5 GeV 2 . In

both the cashes, h⊥ν
1T are at initial scale and FFs are taken as phenomenological input at the scale

µ2 = 2.5 GeV 2. Data are measured by HERMES[32].

of DGLAP evolution are encoded into the parameters and the TMDs are expected to follow
more like DGLAP evolution in this approach.

Our model predictions to the Collins asymmetry are shown in Fig.4 and compared with the
HERMES data for the kinematics 0.023 ≤ x ≤ 0.4, 0.2 ≤ z ≤ 0.7 and 0.1 ≤ y ≤ 0.95. The
upper row is for π+ and the lower row is for π− production channels. The first, second and
third columns indicate the x, z and Ph⊥ variations of Collins asymmetry respectively. The red
continuous lines represent the model prediction of Collins asymmetry where the f ν

1 is evolved in
QCD evolution given in[15, 18], see Sec.III C. The corresponding error is represented in yellow
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asymmetry for π+ channel and π− channel are positive and negative respectively as found
in experimental measurements. In this model, the amount of the Collins asymmetries(in the
HERMES kinematics) are 0.0236 and -0.0364 for π+ and π− channels respectively (see Table
I).

In Fig.5, the model result for Collins asymmetry is compared with the COMPASS data
corresponding to the kinematics: 0.003 ≤ x ≤ 0.7, 0.2 ≤ z ≤ 1.0 and 0.1 ≤ y ≤ 0.9. All the
colors and indicators represent the same as used in Fig.4. We observe that our model prediction
to the Collins asymmetry is quite reasonable. As for HERMES, the agreement of the model
predictions for variation with Ph⊥ is not so good. The parameter evolution approach(blue
line) again shows excellent agreement with the COMPASS data. In this model, the amount
of integrated asymmetries(in the COMPASS kinematics) are 0.0374 and -0.0534 in π+ and π−

channels respectively(see Table I).
Model prediction to the single spin asymmetry Asin(3φh−φS)

UT is shown in Fig.6 and compared
with HERMES data[32]. (The color and signs of plots represent the same as of Fig.4.) This
asymmetry involves pretzelocity distribution and characterizes the p⊥ dependence of the trans-
verse quark polarization in a transversely polarized proton. The pretzelocity TMD is linked
to the non spherical shape of the proton and quark orbital angular momentum. Compared
to Asin(φh+φS)

UT , this asymmetry is suppressed by a factor of P 2
h⊥/M2 and hence expected to

be very small for small transverse momentum of the outgoing hadron | Ph⊥ |< M , where M

is the proton mass (see Eq.(63)). Experimental results show that the asymmetries as func-
tions of x, z or Ph⊥ are near equal to zero as shown in Fig.6. Our model results also predict
almost negligible asymmetries for both the channels. As a result, the amount of integrated
asymmetries(Eq.(75)) are also very small and are found to be -0.0011 and 0.0015 for the π+

and π− channels respectively.
The model prediction to SSA Asin φh

UL is shown in Fig.7 and compared with the HERMES
data[33] for π+ and π− production channels. The colors and symbols represent the same as
in Fig.4. This asymmetry has contribution from h⊥ν

1L (x, p2
⊥) TMD, see Eq.(65). Compared to

Asin(φh+φS)
UT (Eq.(62)), the asymmetry Asin φh

UL is suppressed by a factor of Ph⊥/M and expected
to be smaller than Collins asymmetry for small transverse momenta of the outgoing hadron
which is consistent with the available data. Model result for the amplitude of the asymmetries
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Double Spin Asymmetries(DSA)

• when both the incoming lepton and the proton 
are polarized  =>DSA

• DSAs measured in many experiments for 
longitudinally polarized lepton and long/
transversely polarized proton.

• SSAs discussed here are proportional to Collins 
function

• DSAs are proportional to chiral even FF

hadron. Since helicity is conserved in hard process, the chiral-odd TMD h1(x, p⊥) has to be
convoluted with a chiral-odd FF, which is Collins function. Unlike Sivers function which differs
by a sign for SIDIS and Drell-Yan processes, Collins function is same in both processes. In
the SIDIS process we consider, a transversely polarised quark is scattered out of transversely
polarised proton with the probability provided by transversity distribution h1(x, p⊥) and frag-
mented to a hadron with probability given by Collins function H⊥

1 (z, k⊥). The transverse
polarization of the intial proton gets transferred to the final state by the hard scattering which
produces an azimuthal spin asymmetry in the final hadron about the “jet axis”.

The azimuthal dependence in the structure function F sin(φh+φS)
UT , given in Eq.(9), can be

written in terms of φ as

sin(φh + φS)F sin(φh+φS)
UT =

∑

ν

e2
ν

∫
d2p⊥

Ph⊥

k⊥

(

sin(φh + φS) − z
p⊥

Ph⊥
sin(φ + φS)

)

hν
1H⊥ν

1 ,

(47)

which is contributed from azimuthal angle φh
q involved in fragmentation process. φh

q is the
azimuthal angle of the produced hadron with respect to the fragmenting quark helicity frame
and defined at O(p2

⊥/Q2) as[19]

cos φh
q = Ph⊥

k⊥
cos(φh − φ) − z

p⊥

k⊥
(48)

sin φh
q = Ph⊥

k⊥
sin(φh − φ). (49)

The pre-factors in the denominator and numerator of Eq.(46) are the planar elementary hard
cross-sections

dσ̂#q↑→#q↑

dy
+ dσ̂#q↑→#q↓

dy
= dσ̂

dy
= 2πα2

sxy2 [1 + (1 − y)2], (50)

dσ̂#q↑→#q↑

dy
− dσ̂#q↑→#q↓

dy
= d(∆σ̂)

dy
= 4πα2

sxy2 [(1 − y)]. (51)

The Collins asymmetry defined in Eq.(46) is a function of the variables x, z, Ph⊥ and y.
Similarly, sin(3φh − φS) weighted azimuthal SSA Asin(3φh−φS)

UT is defined as

Asin(3φh−φS)
UT (x, z, Ph⊥, y) =

4π2α2 (1−y)
sxy2 F sin(3φh−φS)

UT (x, z, Ph⊥, y)
2π2α2 1+(1−y)2

sxy2 FUU(x, z, Ph⊥, y)
. (52)

15

Where

T ν
1 (x) = x2aν

1 (1 − x)2bν
1−1,

T ν
2 (x) = x2aν

2−2(1 − x)2bν
2−1, (30)

T ν
3 (x) = xaν

1+aν
2−1(1 − x)bν

1+bν
2−1,

Rν(x) = δν ln(1/x)
κ2(1 − x)2 .

The values of the model parameters aν
i , bν

i (i = 1, 2) and δν are given in [8] at initial scale
µ0 = 0.8 GeV with the AdS/QCD scale parameter κ = 0.4 GeV [24]. The pre-factors containing
Cj(j = S, V, V V ) and Nk(j, k = S, 0, 1) are the normalized constants which satisfy the quark
counting rules for unpolarized TMDs. The subscript A represents V and V V for u and d quarks
respectively. Note that the normalisation constant Nd

S = 0 for d quarks.

B. Fragmentation functions

We use Gaussian ansatz for fragmentations functions as discussed in Ref.[2, 4].

Dh/ν
1 (z, k⊥) = Dh/ν

1 (z)e−k2
⊥/〈k2

⊥〉

π〈k2
⊥〉 (31)

2k⊥

zMh
H⊥ν

1 (z, k⊥) = 2N C
ν (z)Dh/ν

1 (z)h(k⊥)e−k2
⊥/〈k2

⊥〉

π〈k2
⊥〉 (32)

with

N C
ν (z) = NC

ν zρ1(1 − z)ρ2 (ρ1 + ρ2)(ρ1+ρ2)

ρρ1
1 ρρ2

2
(33)

h(k⊥) =
√

2e
k⊥

Mh
e−k2

⊥/M2
h (34)

Where the hadron of momentum Ph and of energy fraction z = P −
h /k− is produced from a

fragmanting quark of momentum k. The values of the parameters are listed in [4] and Dh/ν
1 (z)

is taken from the phenomenological extraction[9]. The average value of the momentum is
taken[18] as 〈k2

⊥〉 = 0.2 GeV 2.
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DSA: comparison with HERMES data:
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FIG. 9: Model prediction to double spin asymmetry Acos(φh−φS)
LT for proton are shown and compared

with HERMES data[36, 37] for π+ and π− channels. Red lines(yellow error region) and blue dashed

lines represent the model prediction to this DSA when fν
1 is evolved in QCD evolution and in parameter

evolution respectively. gν
1T is at initial scale and FFs are taken as phenomenological input at the scale

µ2 = 2.5 GeV 2.
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FIG. 10: Model prediction to Acos(2φh−φS)
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and compared with the preliminary HERMES data [37]. The first, second and third column represent

the x, z and Ph⊥ variations respectively. The red continuous lines(yellow error region) indicates the

same as in Fig.9.

The structure functions in this model read as

FLL =
∑

ν

e2
νN ν

g1

ln(1/x)
πκ2

[

T ν
1 (x) − 〈m2

⊥〉
M2 T ν

2 (x)
]

Dh/ν
1 (z)〈p2

⊥〉x
e−P2

h⊥/〈P 2
h⊥〉

〈P 2
h⊥〉 , (89)

F cos φh
LL = (− 2

Q
)zPh⊥

∑

ν

e2
νN ν

g1

ln(1/x)
πκ2

[

T ν
1 (x) − 〈m2

⊥〉
M2 T ν

2 (x)
]

Dh/ν
1 (z)(〈p2

⊥〉x)2

〈P 2
h⊥〉

e−P2
h⊥/〈P 2

h⊥〉

〈P 2
h⊥〉 ,(90)

F cos(φh−φS)
LT = zPh⊥

M

∑

ν

e2
ν ĝν

1T (x)Dh/ν
1 (z)

(
〈p2

⊥〉x

)2

〈P 2
h⊥〉

e−P2
h⊥/〈P 2

h⊥〉

〈P 2
h⊥〉 , (91)

F cos φS
LT =

(

− 1
Q

)
1

M

∑

ν

e2
ν ĝν

1T (x)Dh/ν
1 (z) (〈p2

⊥〉x)2

(〈P 2
h⊥〉)2

[

〈k2
⊥〉〈P 2

h⊥〉 + z2P 2
h⊥〈p2

⊥〉
]

e−P2
h⊥/〈P 2

h⊥〉

〈P 2
h⊥〉 ,(92)

F cos(2φh−φS)
LT =

(

− 1
Q

)
z2P 2

h⊥
M

∑

ν

e2
ν ĝν

1T (x)Dh/ν
1 (z) (〈p2

⊥〉x)3

(〈P 2
h⊥〉)2

e−P2
h⊥/〈P 2

h⊥〉

〈P 2
h⊥〉 . (93)
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Integrated DSAs

• DSAs integrated over transverse momentum, 
defined in  terms of helicity PDFs

as

ÂP
LL(x, z, µ) =

∑
ν e2

νg1(x, µ)Dh/ν
1 (z, µ)

∑
ν e2

νf1(x, µ)Dh/ν
1 (z, µ)

(101)

The model result for x variation of ÂP
LL(x, z, µ) are shown in Fig.11 and compared with the

HERMES result [38] for π+ and π− channels. We have taken the bin average values for z =
0.46 in the HERMES experiment. All the distributions in Eq.(101) are taken at the scale
µ2 = 2.5 GeV 2. Since the parameter evolution is consistent with the DGLAP evolution, the
helicity PDF and unpolarised PDF are evolved in parameter evolution approach.

FIG. 12: Model prediction to double spin asymmetry AP
1 (x) for proton: red data are the model

predictions corresponding to the measured scale µ. The experimental data are taken from [38–40]

and denoted by the blue color with experimental error bar. The red dash doted line represents the

asymmetry when all the distributions(f1 and g1) are at initial scale µ0.

If no hadron is observed in the final state, the double spin asymmetry for proton is given by

AP
1 =

∑
ν e2

νg1(x)
∑

ν e2
νf1(x) (102)

which have the contribution from PDFs only (no contribution from FFs). In this model, the
variation of AP

1 with x is shown in Fig.12 and compared with the experimental data[38–40].
The red dot-dashed line represents the asymmetry when both the PDFs f1(x) and h1(x) are at
initial scale µ0. The red data points represent the model result corresponding to the set of x and
µ values measured experimentally at EMC, E134 and HERMES[38–40]. Since A1 symmetry
involves the PDFs, we use the parameter evolution approach(which is consistent with DGLAP
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model, amount of the integrated asymmetries are verry small, 0.0093 and 0.0032 for π+ and
π− channels respectively (see table.II) and are consistent with the experimental data.

The model result for DSA Acos(2φh−φS)
LT is shown in Fig.10. The colors and notations are

the same as in Fig.4. The data are taken from HERMES measurement[37]. In the HERMES
measurement, this asymmetry is found to be nearly equal to zero for both the π+ and π−

channels. Our model also shows almost zero asymmetry for x variation, whereas a slight
positive asymmetry is observed for the case of Ph⊥ variation. Note that the model error is
very small and presented by yellow region. The amount of integrated asymmetries are given in
Table.II.

Channel Ãcos(φh−φS)
LT Ãcos(2φh−φS)

LT

π+ 0.0093 -0.00033

π− 0.0032 -0.00006

TABLE II: Amount of DSAs in this model, from Eq.(75), for both the π+ and π− channels. The

amplitudes Ãcos(φh−φS)
LT and Ãcos(2φh−φS)

LT are calculated in HERMES kinematics.
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Â
P L
L

x

π
+

0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

Â
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FIG. 11: Model prediction to Ap
LL for proton, at scale µ2 = 2.5 GeV 2, is shown by red continuous

line. The left plot is for π+ channel and the right plot is for π− channel at z = 0.46. The data are

taken from [38].

In the SIDIS process, the integrated DSA(integrated over transverse momentum)
ÂP

LL(x, z, µ) is measured by the HERMES collaboration and defined in terms of helicity PDFs
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comparison 
with 

HERMES 
data 

* all the distributions are taken at 
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If no hadron is observed in the final state, the double spin asymmetry for proton is given by
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1 =
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νg1(x)
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ν e2
νf1(x) (102)

which have the contribution from PDFs only (no contribution from FFs). In this model, the
variation of AP

1 with x is shown in Fig.12 and compared with the experimental data[38–40].
The red dot-dashed line represents the asymmetry when both the PDFs f1(x) and h1(x) are at
initial scale µ0. The red data points represent the model result corresponding to the set of x and
µ values measured experimentally at EMC, E134 and HERMES[38–40]. Since A1 symmetry
involves the PDFs, we use the parameter evolution approach(which is consistent with DGLAP
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* considered bin averaged value of

model, amount of the integrated asymmetries are verry small, 0.0093 and 0.0032 for π+ and
π− channels respectively (see table.II) and are consistent with the experimental data.

The model result for DSA Acos(2φh−φS)
LT is shown in Fig.10. The colors and notations are

the same as in Fig.4. The data are taken from HERMES measurement[37]. In the HERMES
measurement, this asymmetry is found to be nearly equal to zero for both the π+ and π−

channels. Our model also shows almost zero asymmetry for x variation, whereas a slight
positive asymmetry is observed for the case of Ph⊥ variation. Note that the model error is
very small and presented by yellow region. The amount of integrated asymmetries are given in
Table.II.

Channel Ãcos(φh−φS)
LT Ãcos(2φh−φS)

LT

π+ 0.0093 -0.00033

π− 0.0032 -0.00006

TABLE II: Amount of DSAs in this model, from Eq.(75), for both the π+ and π− channels. The

amplitudes Ãcos(φh−φS)
LT and Ãcos(2φh−φS)

LT are calculated in HERMES kinematics.

FIG. 11: Model prediction to Ap
LL for proton, at scale µ2 = 2.5 GeV 2, is shown by red continuous

line. The left plot is for π+ channel and the right plot is for π− channel at z = 0.46. The data are

taken from [38].

In the SIDIS process, the integrated DSA(integrated over transverse momentum)
ÂP

LL(x, z, µ) is measured by the HERMES collaboration and defined in terms of helicity PDFs
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• If no final hadron is observed [DIS], the DSA 
for proton is given by

• does not involve any frag. function.
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inequalities

evolution) for the scale evolution. Since the evolutions of the PDFs are well known, as expected
the model predictions are in good agreement with the data.

VI. RELATIONS

From the Fig.13 we can write a model dependent inequality as

Asin(φh+φs)
UT (Ph⊥) ≤ 1

2 |AUU(Ph⊥) + ALL(Ph⊥)| (103)

The above inequality can be considered as a Soffer bound type relation for asymmetries, which
provides an upper cut for Collins asymmetry in SIDIS process.

FIG. 13: Ratio of the asymmetries A
sin(φh+φs)
UT (Ph⊥)

1
2 |AUU (Ph⊥)+ALL(Ph⊥)| .

Similarly Fig.17 provides an upper bound for Asin(3φh−φs)
UT (Ph⊥) as

| P2
h⊥

2M2 Asin(3φh−φs)
UT (Ph⊥)| ≤ 1

2 |AUU(Ph⊥) − ALL(Ph⊥)| (104)
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★ SSA and DSA satisfy a Soffer bound type inequality

FIG. 3: Variation of Collins asymmetry in the three strategies. Red continuous line: when f1 is

at µ2 = 2.5 GeV 2 and h1 is at initial scale µ0. Black dashed line: when both f1 and h1 are at

µ2 = 2.5 GeV 2. Blue dot-dashed line: when both f1 and h1 are at initial scale µ0. In all the cases,

the TMDs are evolved in QCD evolution approach[15, 18], see Sec.III C.

Thus, explicit expression of the single spin asymmetries, in LFQDM, are as the following:
(i) Collins asymmetry

Asin(φh+φS)
UT =

2(1−y)
sxy2
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e
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, (62)

(ii) the SSA Asin(3φh−φS)
UT

Asin(3φh−φS)
UT =

2(1−y)
sxy2

z2P 3
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, (63)

(iii) the SSA Asin(2φh)
UL

Asin(2φh)
UL =

2(1−y)
sxy2
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and (iv) the SSA Asin(φh)
UL

Asin(φh)
UL =
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sxy2 (− 1
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of TMDs and FFs as[19]

FUU = C[f ν
1 Dh/ν

1 ], (6)

sin 2φhF sin 2φh
UL = sin 2φhC
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, (7)
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Q
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, (8)
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1

]

, (9)
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and the structure functions contributing to the DSAs are given by

FLL = C[gν
1LDh/ν

1 ], (11)

cos φhF cos φh
LL = cos φh
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Where, C stands for the convolution as defined in Eq.(5) and f1, h⊥
1L, h1, h⊥

1T , g1L and g1T are
the leading twist T-even TMDs which are functions of x and p⊥. Dh/ν

1 ≡ Dh/ν
1 (z, k⊥) is the

unpolarised FF and H⊥
1 ≡ H⊥

1 (z, k⊥) is the Collins fragmentation function. The contribution
of above structure functions to the azimuthal spin asymmetries are discussed in the following
sections.

In the SIDIS process, asymmetry is observed experimentally during the measurement of
angular distribution of produced hadrons. The azimuthal asymmetries in SIDIS process are
defined as

AS!SP = dσ#(S!)P (SP )→#′hX − dσ#(S!)P (−SP )→#′hX

dσ#(S!)P (SP )→#′hX + dσ#(S!)P (−SP )→#′hX
. (16)
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Thus, in this model the explicit form of the double spin asymmetries are given by
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ν ĝν
1T (x)Dh/ν

1 (z) (〈p2
⊥〉x)3

(〈P 2
h⊥〉)2

e−P2
h⊥/〈P 2

h⊥〉

〈P 2
h⊥〉

1+(1−y)2

sxy2
∑

ν e2
νN ν

f1
ln(1/x)

πκ2

[

T ν
1 (x) + 〈m2

⊥〉
M2 T ν

2 (x)
]

Dh/ν
1 (z)〈p2

⊥〉x
e

−P2
h⊥/〈P 2

h⊥〉

〈P 2
h⊥〉

. (98)

Where,

ĝν
1T (x) =

(
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SN ν2

S − C2
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3N ν2
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2 ln(1/x)

πκ2 T ν
3 (x), (99)

N ν
g1 =
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SN ν2
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3N ν2

0 − 2
3N ν2

1
))

. (100)

Here all the DSAs are functions of x, z, Ph⊥, y at a scale µ. The DSAs ALL and Acos φh
LL

have contribution from the helicity TMD, gν
1L . The other three DSAs Acos(φh−φS)

LT , Acos φS
LT and

Acos(φh−φS)
LT have contributions from the worm-gear TMD, gν

1T .
The model prediction of cos(φh − φS) weighted double spin asymmetry Acos(φh−φS)

LT for longi-
tudinally polarized lepton and transversely polarized proton are shown in Fig.9. The error bar
is very small in this case and presented by yellow region. Our results show reasonably good
agreement with the HERMES data. This asymmetry is found to be slightly positive for both
the π+ and π− channels as observed by HERMES experiment[36, 37]. Positive asymmetry
for π− channel is also found in Hall-A results on transversely polarised 3He target. In our
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evolution) for the scale evolution. Since the evolutions of the PDFs are well known, as expected
the model predictions are in good agreement with the data.

VI. RELATIONS

From the Fig.13 we can write a model dependent inequality as

Asin(φh+φs)
UT (Ph⊥) ≤ 1

2 |AUU(Ph⊥) + ALL(Ph⊥)| (103)

The above inequality can be considered as a Soffer bound type relation for asymmetries, which
provides an upper cut for Collins asymmetry in SIDIS process.
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FIG. 13: Ratio of the asymmetries A
sin(φh+φs)
UT (Ph⊥)

1
2 |AUU (Ph⊥)+ALL(Ph⊥)| .

Similarly Fig.17 provides an upper bound for Asin(3φh−φs)
UT (Ph⊥) as

| P2
h⊥

2M2 Asin(3φh−φs)
UT (Ph⊥)| ≤ 1

2 |AUU(Ph⊥) − ALL(Ph⊥)| (104)
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another inequality



some equalities:

FIG. 14: Ratio of the asymmetries A
sin(3φh−φs)
UT (Ph⊥)

1
2 |AUU (Ph⊥)−ALL(Ph⊥)| .

FIG. 15: Ratio of the asymmetries.

In this model, relations among the SSAs and DSAs can be written as
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Where 〈n̂2
⊥〉 = [〈k2

⊥〉〈p2
⊥〉 + z2P 2

h⊥〈p2
⊥〉] and 〈m̂2

⊥〉 is given in the Eq.(74). Right hand side of all
these equations are functions of y and Q only and independent of x, z and Ph⊥.
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In this model, relations among the SSAs and DSAs can be written as
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⊥〉 is given in the Eq.(74). Right hand side of all
these equations are functions of y and Q only and independent of x, z and Ph⊥.
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The pre-factor CA represents CV and CV V for u and d quarks respectively.

A. Predictions for COMPASS and HERMES

All the above asymmetries are functions of x, z, Ph⊥, y and scale µ whereas the experimental
measurements of asymmetries provide the variation of the integrated asymmetry with one
variable at a time. Therefore one has to integrate the denominator and numerator separately
over all the other variables except that one variable which is measured in that data. Also to
compare with the experimental data it is needed to keep the x, y, z dependence canceling factors
in the numerator and denominator of asymmetries unchanged.

An amount of integrated asymmetry can be estimated by integrating over all the variables
x, z, Ph⊥ and y in the corresponding kinametical limits i.e.,

ÃW(φh,φS)
S!SP

= 2

∫
dxdzdPh⊥dy

(
∫

dφhdφS[dσ#(S!)P (SP )→#′hX − dσ#(S!)P (−SP )→#′hX ]W(φh, φS)
)

∫
dxdzdPh⊥dy

(
∫

dφhdφS[dσ#(S!)P (SP )→#′hX + dσ#(S!)P (−SP )→#′hX ]
) .(75)
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★ ratio of asymmetries associated with same TMDs
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FIG. 16: Ratio of the integrated(over z) Collins function and the integrated unpolarized fragmentation

functions(Eq.31,32) for u and d quarks.
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how much the axial vector diquark contribute?

• we evaluate the SSAs with            i.e., without 
uu - axial vector diquark.

•
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Sivers & Boer-Mulders Asymmetries

• Sivers and Boer-Mulders functions are T-odd.

• Require a complex phase in the LFWFs.

• Sivers function: distibution of unpolarized 
quark inside a transversely polarized proton.

• Boer-Mulders function: transversely polarized 
quark inside an unpolarized proton.

• Sivers/Boer-Mulders asymmetries: 
experimentally observed. 

[DC,T. Maji, A. Mukherjee, in preparation]



• both are process dependent.

• Both are studied in diff. models.

• LFWFs modified to incorporate the FSI.



modified LFWFs
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(1− y)P+;−!⊥

FIG. 1: Left: tree level diagram. Right: FSI diagram for γ∗p → q(qq)

from triplet diquark). The state with spin-1 diquark is given as [4]

|ν A〉± =

∫
dx d2p⊥

2(2π)3
√
x(1− x)

[
ψ±(ν)
++ (x,p⊥)|+

1

2
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1
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2
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2
− 1; xP+,p⊥〉

+ ψ±(ν)
−− (x,p⊥)|−

1

2
− 1; xP+,p⊥〉

]
. (3)

Where |λq λD; xP+,p⊥〉 represents a two-particle state with a quark of helicity λq = ±1
2 and a

axial-vector diquark of helicity λD = ±1, 0(triplet).

III. FINAL STATE INTERACTION AND T-ODD TMDS

The final state interaction[5] produces a non-trivial phase in the amplitude and gives

non-vanishing T-odd TMDs along with the T-even TMDs. There are two T-odd TMDs,

f⊥ν
1T (x,p2

⊥)(Sivers function) and h⊥ν
1 (x,p2

⊥)(Boer-Mulders function), at the leading twist. The

contribution of FSI is incorporated in the wave functions and the wave functions are modified

with spin dependent complex phases as:

3

ψqλΛ(x, p⊥) = N qf(x, p⊥,λ,Λ)φqi (x, p⊥) (1)

ψqλΛ(x, p⊥) = N qf(x, p⊥,λ,Λ)(1 + ie1e28π (p2⊥ +B)gi)φqi (x, p⊥) (2)

AUL ∼ h⊥1L(x, p2⊥)⊗H⊥1 (z, Ph⊥) (3)

AUT ∼ h1(x, p2⊥)⊗H⊥1 (z, Ph⊥) (4)

ALT ∼ g⊥1T (x, p2⊥)⊗D1(z, Ph⊥) (5)

To understand qualititavely, we compare our reselt for collins asymmetry in the three different
schemes(shown in Fig.??):
(i) f ν1 is at µ2 = 2.5 GeV 2 and hν1 is at initial scale µ0,
(ii) both f ν1 and hν1 are at µ2 = 2.5 GeV 2

(iii) both f ν1 and hν1 are at µ2
0.

Interestingly, the scheme-(i) gives better result among these three schemes. The evolution
contribution from hν1 is very small for Collins asymmetry(scheme-(ii)). Note that, in the case
of other asymmetries e.g., Asin(3φh−φS), the scheme-(ii) has a large deviation from the data.
Therefore we evolve the unpolarized TMDs, f ν1 , which is known and contributes to the denom-
inator of the asymmetries and all spin-dependent TMDs whose evolutions are not well known
and are involved in numerators of all the asymmetries are taken at initial scale. Not only this
strategy gives better agreement with data but limits the uncertainty to the numerators of the
asymmetries only. A similar strategy is used in[? ].
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LFWF modifies to

Where,

g1 =

∫ 1

0

dα
−1

α(1− α)p2
⊥ + αm2

g + (1− α)B
(7)

g2 =

∫ 1

0

dα
−α

α(1− α)p2
⊥ + αm2

g + (1− α)B
(8)

and

B = x(1− x)(−M2 +
m2

q

x
+

mD

1− x
) (9)

M,mq,mD and mg are mass of proton, struck quark, diquark and gluon respectively. We take

mg = 0 at the end of the calculations. NS, N
(ν)
0 and N (ν)

1 are the normalization constants.

The LFWFs ϕ(ν)
i (x,p⊥) are modified form of the soft-wall AdS/QCD prediction as[6]

ϕ(ν)
i (x,p⊥) =

4π

κ

√
log(1/x)

1− x
xaνi (1− x)b

ν
i exp

[
− δν

p2
⊥

2κ2

log(1/x)

(1− x)2

]
, (10)

introdusing the parameters aνi , b
µ
i and δν . The wave functions ϕν

i (i = 1, 2) reduce to the

AdS/QCD prediction[7] for the parameters aνi = bνi = 0 and δν = 1.0. We use the AdS/QCD

scale parameter κ = 0.4 GeV as determined in [8] and the quarks are assumed to be massless.

The unintegrated quark-quark correlator for polarized SIDIS is defined as

Φν[Γ](x,p⊥;S) =
1

2

∫
dz−d2zT
2(2π)3

eip.z〈P ;S|ψν
(0)ΓW[0,z]ψ

ν(z)|P ;S〉, (11)

with a flavour ν. The summations over the color indices of quarks are implied. Here p is the

momentum of the struck quark inside the nucleon of momentum P, spin S and x (x = p+/P+)

is the longitudinal momentum fraction carried by struck quark. We choose the light-cone gauge

A+ = 0. The nucleon with helicity λN has spin components S+ = λN
P+

M , S− = λN
P−

M , and ST .

At leading twist, the T-odd TMDs are defined as

Φν[γ+](x,p⊥;S) = ...− εijT p
i
⊥S

j
T

M
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⊥), (12)

Φν[iσj+γ5](x,p⊥;S) = ...+
εijT p

i
⊥

M
h⊥ν
1 (x,p2

⊥). (13)

Using the Eq.(1) in the Eq.(11) the correlators for transversely polarised proton are written
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[D.S  Hwang ,  1003 .0867 ]



Sivers & Boer-Mulders functions

in terms of overlap representations as

Φν[γ+](x,p⊥; ↑) =
1

2

[
C2

S

1

16π3

∑

λq
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λ′
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ψλN †
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λ′
N

λq
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+
1
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16π3
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(14)

Φν[iσ1+γ5](x,p⊥; ↑) =
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(x,p⊥)

]ν
.(15)

Where, λq,λD = ± represent the helicity of quark and diquark respectively. The first term in

the right-hand-side is for the scalar diquark and the second term is corresponding to the vector

diquark. Note, the first terms in the right-hand-side of the two Eqs.(14,15) become zero for d

quark as Nd
S = 0 in the scalar wave functions for d quark. C2

A in the second term stands for

the coefficients C2
V and C2

V V for u quark and d quark respectively. Comparing Eqs.(12,13) with

the Eqs.(14,15) the Sivers function f⊥ν
1T (x,p2

⊥) and Boer-Mulders functions can be written in

the LFQDM as

f⊥ν
1T (x,p2

⊥) =

(
C2

SN
ν2
S − C2

A

1

3
N ν2

0

)
f ν(x,p2

⊥) (16)

h⊥ν
1 (x,p2

⊥) =

(
C2

SN
ν2
S + C2

A

(1
3
N ν2

0 +
2

3
N ν2

1

))
f ν(x,p2

⊥), (17)

where

f ν(x,p2
⊥) = −CFαs

[
p2
⊥ + x(1− x)(−M2 +

m2
D

1− x
+

m2
q

x
)

]
1

p2
⊥
ln

[
1 +

p2
⊥

x(1− x)(−M2 +
m2

D
1−x +

m2
q

x )

]

× ln(1/x)

πκ2
xaν1+aν2−1(1− x)b

ν
1+bν2−1 exp(−p2

⊥ ln(1/x)

κ2(1− x)2
), (18)

with struck quark mass mq and diquark mass mD. In the final state interaction, gluon

exchange strength e1e2
4π → −CFαs. Here the e1 and e2 are electric charge of the struck quark

and scalar diquark respectively.

Moment of the Sivers functions, defined as

f⊥(1)
1T (x) =

∫
d2p⊥

p2⊥
2M2

f⊥
1T (x,p

2
⊥), (19)
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in terms of overlap representations as

Φν[γ+](x,p⊥; ↑) =
1

2

[
C2

S

1

16π3

∑

λq

∑

λN

∑

λ′
N

ψλN †
λq

(x,p⊥)ψ
λ′
N

λq
(x,p⊥)

]u

+
1

2

[
C2

A

1

16π3

∑

λq

∑

λD

∑

λN

∑

λ′
N

ψλN †
λqλD

(x,p⊥)ψ
λ′
N

λqλD
(x,p⊥)

]ν
(14)

Φν[iσ1+γ5](x,p⊥; ↑) =
1

2

[
C2

S

1

16π3

∑

λq

∑

λ′
q

∑

λN

ψλN †
λq

(x,p⊥)ψ
λN
λ′
q
(x,p⊥)

]u

+
1

2

[
C2

A

1

16π3

∑

λq

∑

λ′
q

∑

λD

∑

λN

ψλN †
λqλD

(x,p⊥)ψ
λN
λ′λD

(x,p⊥)

]ν
.(15)

Where, λq,λD = ± represent the helicity of quark and diquark respectively. The first term in

the right-hand-side is for the scalar diquark and the second term is corresponding to the vector

diquark. Note, the first terms in the right-hand-side of the two Eqs.(14,15) become zero for d

quark as Nd
S = 0 in the scalar wave functions for d quark. C2

A in the second term stands for

the coefficients C2
V and C2

V V for u quark and d quark respectively. Comparing Eqs.(12,13) with

the Eqs.(14,15) the Sivers function f⊥ν
1T (x,p2

⊥) and Boer-Mulders functions can be written in

the LFQDM as

f⊥ν
1T (x,p2

⊥) =

(
C2

SN
ν2
S − C2

A

1

3
N ν2

0

)
f ν(x,p2

⊥) (16)

h⊥ν
1 (x,p2

⊥) =

(
C2

SN
ν2
S + C2

A

(1
3
N ν2

0 +
2

3
N ν2

1

))
f ν(x,p2

⊥), (17)

where

f ν(x,p2
⊥) = −CFαs

[
p2
⊥ + x(1− x)(−M2 +

m2
D

1− x
+

m2
q

x
)

]
1

p2
⊥
ln

[
1 +

p2
⊥

x(1− x)(−M2 +
m2

D
1−x +

m2
q

x )

]

× ln(1/x)

πκ2
xaν1+aν2−1(1− x)b

ν
1+bν2−1 exp(−p2

⊥ ln(1/x)

κ2(1− x)2
), (18)

with struck quark mass mq and diquark mass mD. In the final state interaction, gluon

exchange strength e1e2
4π → −CFαs. Here the e1 and e2 are electric charge of the struck quark

and scalar diquark respectively.

Moment of the Sivers functions, defined as

f⊥(1)
1T (x) =

∫
d2p⊥

p2⊥
2M2

f⊥
1T (x,p

2
⊥), (19)
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write

where

∆Nfν/P ↑(x,p⊥) = (−2p⊥
2M

)f⊥
1T (x,p⊥). (21)

(a) (b)

FIG. 4: xh⊥(1)
1 (x) are shown for u and d quarks at initial scale µ0 = 0.8 GeV . Red continuous lines

represent the model result in LFQDM and blue dashed line represent the result in spectator model.

In Fig.4, we show our model result for moment of Boer-Mulder functions, defined as

h⊥(1)
1 (x) =

∫
d2p⊥

p2⊥
2M2

h⊥
1 (x,p

2
⊥), (22)

at the initial scale and compare with the spectator model.

In this model, we observe

|h⊥
1 (x,p

2
⊥)| > |f⊥

1T (x,p
2
⊥)|. (23)

Bore-Mulders function is parametrised[9] as

h⊥ν
1 (x,p2

⊥) " λνf⊥ν
1T (x,p2

⊥). (24)

The Table. shows our model result of λν and compared with the result of HERMES and

COMPASS data fits [9] for cos 2φ asymmetry in SIDIS. The results indicate that Boer-Mulders

functions are negative for both u and d quarks.

IV. SIVERS ASYMMETRY AND BOER-MULDERS ASYMMETRY

The Sivers Asymmetry correlates between transverse momentum of parton and transverse

polarization of nucleon. In the SIDIS precesses, Sivers asymmetry can be extracted by incor-

8

λu λd

LFQDM 2.29 −1.08

Phenomenological fit 2.1± 0.1 −1.11± 0.02

TABLE I: λν of Eq.(24) for u and d quarks are shown in our model and fitted data [9] of HERMES

and COMPASS.

porating the weight factor sin(φh − φS) as

Asin(φh−φS)
UT =

∫
dφhdφS[dσ#P ↑→#′hX − dσ#P ↓→#′hX ] sin(φh − φS)∫

dφhdφS[dσ#P ↑→#′hX + dσ#P ↓→#′hX ]

(25)

Where ↑, ↓ at the superscript of P represent the up and down transverse spin of the target

proton. In the SIDIS processes, the cross-section deference in the numerator can be written as

dσ#P ↑→#′hX − dσ#P ↓→#′hX

dxBdydzd2Ph⊥dφS
=

2α2

sxy2
2

[
1 + (1− y)2

2
sin(φh − φS)F

sin(φh−φS)
UT

+(1− y)

(
sin(φh + φS)F

sin(φh+φS)
UT + sin(3φh − φS)F

sin(3φh−φS)
UT

)

+(2− y)
√
(1− y)

(
sinφSF

sinφS
UT + sin(2φh − φS)F

sin(2φh−φS)
UT

)]
.(26)

The integration in the numerator over φh and φS project out the structure function F sin(φh−φS)
UT

which has contribution to the Sivers asymmetry.

Similarly, the denominator can be written as

dσ#P ↑→#′hX + dσ#P ↓→#′hX

dxBdydzd2Ph⊥dφS
=

2α2

sxy2
2

[
1 + (1− y)2

2
FUU + (2− y)

√
1− y cosφhF

cosφh
UU

+ (1− y)cos2φhF
cos 2φh
UU

]
. (27)

Thus Sivers asymmetry can be written in terms of structure functions as

Asin(φh−φS)
UT (x, z,Ph⊥, y) =

2π2α2 1+(1−y)2

sxy2 F sin(φh−φS)
UT (x, z,Ph⊥)

2π2α2 1+(1−y)2

sxy2 FUU(x, z,Ph⊥)
.

=
2π2α2 1+(1−y)2

sxy2

∑
ν e

2
ν

∫
d2p⊥{−P̂h⊥.p⊥

M }f⊥ν
1T (x,p2

⊥)D
h/ν
1 (z,Ph − zp⊥)

2π2α2 1+(1−y)2

sxy2

∑
ν e

2
ν

∫
d2p⊥f ν

1 (x,p
2
⊥)D

h/ν
1 (z,Ph − zp⊥)

.(28)
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Sivers Asymmetry

• Sivers asym is extracted by the weigh factor 

λu λd

LFQDM 2.29 −1.08

Phenomenological fit 2.1± 0.1 −1.11± 0.02

TABLE I: λν of Eq.(24) for u and d quarks are shown in our model and fitted data [9] of HERMES

and COMPASS.

porating the weight factor sin(φh − φS) as

Asin(φh−φS)
UT =

∫
dφhdφS[dσ#P ↑→#′hX − dσ#P ↓→#′hX ] sin(φh − φS)∫

dφhdφS[dσ#P ↑→#′hX + dσ#P ↓→#′hX ]

(25)

Where ↑, ↓ at the superscript of P represent the up and down transverse spin of the target

proton. In the SIDIS processes, the cross-section deference in the numerator can be written as

dσ#P ↑→#′hX − dσ#P ↓→#′hX

dxBdydzd2Ph⊥dφS
=

2α2

sxy2
2

[
1 + (1− y)2

2
sin(φh − φS)F

sin(φh−φS)
UT

+(1− y)

(
sin(φh + φS)F

sin(φh+φS)
UT + sin(3φh − φS)F

sin(3φh−φS)
UT

)

+(2− y)
√
(1− y)

(
sinφSF

sinφS
UT + sin(2φh − φS)F

sin(2φh−φS)
UT

)]
.(26)

The integration in the numerator over φh and φS project out the structure function F sin(φh−φS)
UT

which has contribution to the Sivers asymmetry.

Similarly, the denominator can be written as

dσ#P ↑→#′hX + dσ#P ↓→#′hX

dxBdydzd2Ph⊥dφS
=

2α2

sxy2
2

[
1 + (1− y)2

2
FUU + (2− y)

√
1− y cosφhF

cosφh
UU

+ (1− y)cos2φhF
cos 2φh
UU

]
. (27)

Thus Sivers asymmetry can be written in terms of structure functions as

Asin(φh−φS)
UT (x, z,Ph⊥, y) =

2π2α2 1+(1−y)2

sxy2 F sin(φh−φS)
UT (x, z,Ph⊥)

2π2α2 1+(1−y)2

sxy2 FUU(x, z,Ph⊥)
.

=
2π2α2 1+(1−y)2

sxy2

∑
ν e

2
ν

∫
d2p⊥{−P̂h⊥.p⊥

M }f⊥ν
1T (x,p2

⊥)D
h/ν
1 (z,Ph − zp⊥)

2π2α2 1+(1−y)2

sxy2

∑
ν e

2
ν

∫
d2p⊥f ν

1 (x,p
2
⊥)D

h/ν
1 (z,Ph − zp⊥)

.(28)
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In this model, the explicit form of the Sivers functions is given in Eq.16 and the unpolarised

TMDs is fiven in [10]. The model result for Sivers asymmetries are shown in Fig.5 in the π+

and π− channels and compared with the HERMES data [11] in the kinematical region

0.023 < x < 0.4 0.2 < z < 0.7 0.31 < y < 0.95, (29)

and Ph⊥ > 0.05 GeV .
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A
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FIG. 5: Model result of Sivers asymmetries, Asin(φh−φS)
UT , are shown by the continuous (red) lines for

π+(upper row) and π−(lower row) channels and compared with the HERMES data[11]. f⊥ν
1T (x,p⊥)

are taken at initial scale and fν
1 (x,p⊥) are evolved at µ2 = 2.5 GeV 2 following the QCD evolution[12].

The fragmentation function Dh/ν
1 (z,k⊥) are taken as a phenomenological[13] input at µ2 = 2.5 GeV 2.

The Boer-Mulders asymmetry projects out with a weight factor cos 2φh and defined in terms
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Boer-Mulders Asymmetry

• extracted with the weight factor

In this model, the explicit form of the Sivers functions is given in Eq.16 and the unpolarised

TMDs is fiven in [10]. The model result for Sivers asymmetries are shown in Fig.5 in the π+

and π− channels and compared with the HERMES data [11] in the kinematical region

0.023 < x < 0.4 0.2 < z < 0.7 0.31 < y < 0.95, (29)

and Ph⊥ > 0.05 GeV .

FIG. 5: Model result of Sivers asymmetries, Asin(φh−φS)
UT , are shown by the continuous (red) lines for

π+(upper row) and π−(lower row) channels and compared with the HERMES data[11]. f⊥ν
1T (x,p⊥)

are taken at initial scale and fν
1 (x,p⊥) are evolved at µ2 = 2.5 GeV 2 following the QCD evolution[12].

The fragmentation function Dh/ν
1 (z,k⊥) are taken as a phenomenological[13] input at µ2 = 2.5 GeV 2.

The Boer-Mulders asymmetry projects out with a weight factor cos 2φh and defined in terms

10
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FIG. 6: Model result of Boer-Mulders asymmetries, Acos 2φh
UU . The continuous (red) lines represent the

model prediction and the data are measured by HERMES collaboration[9, 14]. h⊥ν
1 (x,p⊥) are taken

at initial scale and fν
1 (x,p⊥) are evolved at µ2 = 2.5 GeV 2 following the QCD evolution[12]. The

fragmentation function H⊥ν
1 (z,k⊥) are taken as a phenomenological[15, 16] input at µ2 = 2.5 GeV 2.

of structure functions as

Acos 2φh
UU =

4π2α2 (1−y)
sxy2 F

cos 2φh
UU (x, z,Ph⊥)

2π2α2 1+(1−y)2

sxy2 FUU(x, z,Ph⊥)

=
4π2α2 (1−y)

sxy2

∑
ν e

2
ν

∫
d2p⊥{

(Ph⊥.p⊥)−2z(P̂h⊥.p⊥)2+zp2⊥
zMhM

}h⊥ν
1 (x,p2

⊥)H
⊥ν
1 (z, |Ph − zp⊥|)

2π2α2 1+(1−y)2

sxy2

∑
ν e

2
ν

∫
d2p⊥f ν

1 (x,p
2
⊥)D

h/ν
1 (z, |Ph − zp⊥|)

.(30)

The Boer-Mulders function in this model is given in Eq.17. We use the unpolarised fragmen-

tation and the Collins asymmetry H⊥ν
1 (z,k⊥) as a phenomenological input [13, 15].

Dh/ν
1 (z,k⊥) = Dh/ν

1 (z)
e−k2

⊥/〈k2⊥〉

π〈k2⊥〉
(31)

H⊥ν
1 (z,k⊥) = (

zMh

2k⊥
)2NC

ν (z)Dh/ν
1 (z)h(k⊥)

e−k2
⊥/〈k2⊥〉

π〈k2⊥〉
(32)
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summary and conclusion

• We presented results for both SSA and DSA in 
a light front quark-diquark model.

•  scale evolution of all TMDs are not known.

• polarized TMDs are taken at initial scale. Two 
diffeent evol. scheme used for unpol TMD.

• SSA and DSA are compared with HERMES 
and COMPASS data. Good agreement!

• Different relations among SSA and DSA are 
found. Interesting to check in other models.



• LFWFs modified to have complex phase factor 
which is required for Sivers & Boer Mulders 
functions.

• Sivers -->Lensing function  

• Sivers & Boer-Mulders asymmetries are 
consistent with experimental data.

current, is written in terms of overlap representations as

−(q1 − iq2)
F ν
2 (Q

2)

2M
=

∫ 1

0

dxd2p⊥
16π3

[
C2

S

∑

λq

∑

λN "=λ′
N

ψλN †
λq

(x,p⊥)ψ
λ′
N

λq
(x,p⊥)

+C2
A

∑

λq

∑

λD

∑

λN "=λ′
N

ψλN †
λqλD

(x,p⊥)ψ
λ′
N

λqλD
(x,p⊥)

]
(39)

=

∫ 1

0

dx

(
C2

SN
ν2
S − C2

A

1

3
N ν2

0

)
2T ν

3 (x)(1− x)3e−Q2 ln(1/x)

4κ2 (40)

The anomalous magnetic moment κν can be found from the Pauli form factor in the limit

Q2 = 0, κν = F ν
2 (0). Thus

κν =

∫ 1

0

dxκν(x) =

∫ 1

0

dx

(
C2

SN
ν2
S − C2

A

1

3
N ν2

0

)
2T ν

3 (x)(1− x)3 (41)

A simple relation between integrated Sivers function(over p⊥) and anomalous magnetic mo-

ments is found as

f⊥ν
1T (x) = −CFαsGν(x)κν(x) (42)

In this model, the relation can not be derived analytically, however numerical calculation gives

the lensing function as

Gν(x) " 1

4(1− x)

∣∣∣∣
ν=u,d

(43)

Similar type of lensing function is found in [20]. In the Ref.[21], Gν(x) ∝ 1/(1− x)η where η is

typically around 0.4 but η can vary between 0.03 and 2.

The total longitudinal angular momentum of parton ν is defined in terms of the moment of

the GPDs as

Jν =
1

2

∫ 1

0

dxx[Hν(x, 0, 0) + Eν(x, 0, 0)]. (44)

In the forward limit, moment of the E and H GPDs satisfy

∫ 1

0

dxHν(x, 0, 0) = nν =

∫ 1

0

dxd2p⊥f
ν
1 (x,p

2
⊥) (45)

∫ 1

0

dxEν(x, 0, 0) = κν (46)
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