Azimuthal Spin Asymmetries in SIDIS

Dipankar Chakrabarti IIT Kanpur

LightCone 2017, Mumbai Sept. 20, 2017.

Ref: Tanmay Maji, DC, O.V. Teryaev, in preparation

Introduction

Semi Inclusive DIS: $\quad \ell p \rightarrow \ell^{\prime} h X$

- spin asymmetries are observed at the angular distribution of the final hadron.
- spin asymmetries \rightarrow non-vanishing transverse momentum of the partons
- SIDIS: factorizes into TMDs and fragmentation functions

- The azimuthal asymmetry

$$
A_{S_{\ell} S_{P}}=\frac{d \sigma^{\ell\left(S_{\ell}\right) P\left(S_{P}\right) \rightarrow \ell^{\prime} h X}-d \sigma^{\ell\left(S_{\ell}\right) P\left(-S_{P}\right) \rightarrow \ell^{\prime} h X}}{d \sigma^{\ell\left(S_{\ell}\right) P\left(S_{P}\right) \rightarrow \ell^{\prime} h X}+d \sigma^{\ell\left(S_{\ell}\right) P\left(-S_{P}\right) \rightarrow \ell^{\prime} h X}}
$$

- asymmetries can be written as convolutions of TMDs and fragmentation functions(FFs).
- In cross-section, each structure function comes with a definite angular coeff. contribution of a single TMD can be extracted by introducing corresponding weight-factor.

$$
\begin{align*}
\frac{d \sigma^{\ell\left(S_{\ell}\right)+P\left(S_{P}\right) \rightarrow \ell^{\prime} P_{h} X}}{d x_{B} d y d z d^{2} \mathbf{P}_{h \perp} d \phi_{S}} & =\frac{2 \alpha^{2}}{s x y^{2}}\left\{\frac{1+(1-y)^{2}}{2} F_{U U}+(2-y) \sqrt{1-y} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+(1-y) \cos 2 \phi_{h} F_{U U}^{\cos 2 \phi_{h}}\right. \\
& +S_{P}^{L}\left[(1-y) \sin 2 \phi_{h} F_{U L}^{\sin 2 \phi_{h}}+(2-y) \sqrt{1-y} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}\right] \\
& +S_{P}^{L} S_{\ell}^{z}\left[\frac{1-(1-y)^{2}}{2} F_{L L}+y \sqrt{1-y} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right] \\
& +S_{P}^{T}\left[\frac{1+(1-y)^{2}}{2} \sin \left(\phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right. \\
& +(1-y)\left(\sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}\right) \\
& \left.+(2-y) \sqrt{(1-y)}\left(\sin \phi_{S} F_{U T}^{\sin \phi_{S}}+\sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right)\right] \\
& +S_{P}^{T} S_{\ell}^{z}\left[\frac{1-(1-y)^{2}}{2} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right. \\
& \left.\left.+y \sqrt{1-y}\left(\cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right)\right]\right\} \tag{4}
\end{align*}
$$

The weighted structure functions, $F_{S_{\ell} S}^{\mathcal{\mathcal { V }}\left(\phi_{h}, \phi_{S}\right)}$, are defined as

$$
\begin{aligned}
F_{S_{\ell} S}^{\mathcal{W}\left(\phi_{h}, \phi_{S}\right)} & =\mathcal{C}\left[\mathcal{W} \hat{f}\left(x, \mathbf{p}_{\perp}\right) \hat{D}\left(z, \mathbf{k}_{\perp}\right)\right] \\
& =\sum_{\nu} e_{\nu}^{2} \int d^{2} \mathbf{p}_{\perp} d^{2} \mathbf{k}_{\perp} \delta^{(2)}\left(\mathbf{P}_{h \perp}-z \mathbf{p}_{\perp}-\mathbf{k}_{\perp}\right) \mathcal{W}\left(\mathbf{p}_{\perp}, \mathbf{P}_{h \perp}\right) \hat{f}^{\nu}\left(x, \mathbf{p}_{\perp}\right) \hat{D}^{\nu}\left(z, \mathbf{k}_{\perp}\right)
\end{aligned}
$$

- at leading twist 8 TMDs:
- 2 fragmentation functions for final unpolarized hadrons
chiral even $D_{1}\left(z, k_{\perp}^{2}\right)$
fragmentation of an unpolarized quark
chiral odd $H_{1}^{\perp}\left(z, k_{\perp}^{2}\right)$ Collins function
fragmentation of a transversely polarized quark
- chiral odd $h_{1 \perp}^{\perp}\left(x, p_{\perp}^{2}\right)$ couples with chiral odd $H_{\perp}^{\perp}\left(z, P_{h \perp}\right)$ and measured in SSA with unpolarized lepton and longitudinally polarized proton:

$$
A_{U L} \sim h_{1 L}^{\perp}\left(x, p_{\perp}^{2}\right) \otimes H_{1}^{\perp}\left(z, P_{h \perp}\right)
$$

- transversity TMD:

$$
A_{U T} \sim h_{1}\left(x, p_{\perp}^{2}\right) \otimes H_{1}^{\perp}\left(z, P_{h \perp}\right)
$$

- chiral even $g_{g_{I T}^{\perp}\left(x, p_{\perp}^{2}\right)}$ accessed in DSA

$$
A_{L T} \sim g_{1 T}^{\perp}\left(x, p_{\perp}^{2}\right) \otimes D_{1}\left(z, P_{h \perp}\right)
$$

We consider the SIDIS for pi+ and pi- channels

SIDIS kinematics

incoming proton virtual photon
struck quark

$$
P \equiv\left(P^{+}, \frac{M^{2}}{P^{+}}, \mathbf{0}_{\perp}\right)
$$

$$
q \equiv\left(x_{B} P^{+}, \frac{Q^{2}}{x_{B} P^{+}}, \mathbf{0}_{\perp}\right)
$$

$$
p \equiv\left(x P^{+}, \frac{p^{2}+\left|\mathbf{p}_{\perp}\right|^{2}}{x P^{+}}, \mathbf{p}_{\perp}\right)
$$

diquark

$$
p_{D} \equiv\left((1-x) P^{+}, \frac{p^{2}+\left|\mathbf{p}_{\perp}\right|^{2}}{(1-x) P^{+}},-\mathbf{p}_{\perp}\right)
$$

produced hadron

$$
\mathbf{P}_{h} \equiv\left(P^{+}, P^{-}, \mathbf{P}_{h \perp}\right)
$$

Bjorkenvariable

$$
x=\frac{Q^{2}}{2(P . q)}=x_{B}
$$

\overbrace{z}^{y}
$\gamma^{*}-P$ center of mass frame:

The fractional energy transferred by the photon $y=\frac{P . q}{P \cdot \ell}=\frac{Q^{2}}{s x}$
the energy fraction carried by the produced hadron $z=\mathbf{P}_{h}^{-} / k^{-}=\frac{P \cdot P_{h}}{P \cdot q}=z_{h}$.
[Fig: Anselmino et al, PRD 75,054032]

The model

- Light-front quark-diquark model considering both scalar and axial vecor diquarks: [Jakob, Mulders, Rodrigues, NPA626, 9371

$$
|P ; \pm\rangle=C_{S}\left|u S^{0}\right\rangle^{ \pm}+C_{V}\left|u A^{0}\right\rangle^{ \pm}+C_{V V}\left|d A^{1}\right\rangle^{ \pm} .
$$

$S=$ scalar diquark $A=$ axialvector diquark
(isospin at the superscript)

$$
\begin{aligned}
|u S\rangle^{ \pm} & =\int \frac{d x d^{2} \mathbf{p}_{\perp}}{2(2 \pi)^{3} \sqrt{x(1-x)}}\left[\psi_{+}^{ \pm(u)}\left(x, \mathbf{p}_{\perp}, \mu\right)\left|+\frac{1}{2} s ; x P^{+}, \mathbf{p}_{\perp}\right\rangle\right. \\
& \left.+\psi_{-}^{ \pm(u)}\left(x, \mathbf{p}_{\perp}, \mu\right)\left|-\frac{1}{2} s ; x P^{+}, \mathbf{p}_{\perp}\right\rangle\right]
\end{aligned}
$$

LF

$$
\begin{aligned}
& \psi_{+}^{+(\nu)}\left(x, \mathbf{p}_{\perp}, \mu\right)=N_{s} \varphi_{1}^{(\nu)}\left(x, \mathbf{p}_{\perp}, \mu\right) \\
& \psi_{-}^{+(\nu)}\left(x, \mathbf{p}_{\perp}, \mu\right)=N_{s}\left(-\frac{p^{1}+i p^{2}}{x M}\right) \varphi_{2}^{(\nu)}\left(x, \mathbf{p}_{\perp}, \mu\right),
\end{aligned}
$$

wavefunctions $\psi_{+}^{-(\nu)}\left(x, \mathbf{p}_{\perp}, \mu\right)=N_{s}\left(\frac{p^{1}-i p^{2}}{x M}\right) \varphi_{2}^{(\nu)}\left(x, \mathbf{p}_{\perp}, \mu\right)$,

$$
\psi_{-}^{-(\nu)}\left(x, \mathbf{p}_{\perp}, \mu\right)=N_{s} \varphi_{1}^{(\nu)}\left(x, \mathbf{p}_{\perp}, \mu\right)
$$

- general form of the LF wavefunctions:

$$
\psi_{\lambda \Lambda}^{q}\left(x, p_{\perp}\right)=N^{q} f\left(x, p_{\perp}, \lambda, \Lambda\right) \phi_{i}^{q}\left(x, p_{\perp}\right)
$$

- The two-particle LF wavefunctions are adopted from AdS/QCD prediction
[Brodsky and Teramond arXiv:I2O3.4025]

$$
\varphi_{i}^{(\nu)}\left(x, \mathbf{p}_{\perp}\right)=\frac{4 \pi}{\kappa} \sqrt{\frac{\log (1 / x)}{1-x}} x^{a_{i}^{\nu}}(1-x)^{b_{i}^{\nu}} \exp \left[-\delta^{\nu} \frac{\mathbf{p}_{\perp}^{2}}{2 \kappa^{2}} \frac{\log (1 / x)}{(1-x)^{2}}\right]
$$

$\kappa=0.4 \mathrm{GeV}$
a_{i}^{ν}, b_{i}^{ν} and δ^{ν} are fixed by fitting to EM formfactors.
[T. Maji and DC, PRD 94, 094020]

scale evolution

- QCD evolution of unpolarized TMDs and FFs
[Aybat and Rogers, PRD83, II4042]
TMD evolution in coord space:
[Aybat, Collins, Qiu and Rogers, PRD85, O34043]

kernel

$$
\tilde{R}\left(\mu, \mu_{0}, b_{T}\right)=\exp \left[\ln \frac{\mu}{\mu_{0}} \int_{\mu}^{\mu_{b}} \frac{d \mu^{\prime}}{\mu^{\prime}} \gamma_{K}\left(\mu^{\prime}\right)+\int_{\mu_{0}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}} \gamma_{F}\left(\mu^{\prime}, \frac{\mu^{2}}{\mu^{\prime 2}}\right)\right] .
$$

$$
\gamma_{F}\left(\mu^{\prime}, \frac{\mu^{2}}{\mu^{\prime 2}}\right)=\alpha_{s}\left(\mu^{\prime}\right) \frac{C_{F}}{\pi}\left(\frac{3}{2}-\ln \frac{\mu^{2}}{\mu^{\prime 2}}\right),
$$

$$
\gamma_{K}\left(\mu^{\prime}\right)=\alpha_{s}\left(\mu^{\prime}\right) \frac{C_{F}}{\pi}
$$

- parameter evolution [T. Maji and DC, PRD 94, 094020] parameters in the model are fitted to follow DGLAP for pdfs, same scale dependence of the parameters is used for TMDs
- One can adopt the same QCD evolution for polarized TMDs to predict the asym.
- for Collins asym, we compare three schemes:
(i) f_{1}^{ν} is at $\mu^{2}=2.5 G e V^{2}$ and h_{1}^{ν} is at initial scale μ_{0},
(ii) both f_{1}^{ν} and h_{1}^{ν} are at $\mu^{2}=2.5 G e V^{2}$
(iii) both f_{1}^{ν} and h_{1}^{ν} are at μ_{0}^{2}.
- scheme(i) is found to be the closest to the data!
- We adopt scheme(i), the uncertainty/error is limited in the polarized TMDs only.

comparision of the different schemes

Collins asymmetry

 comparison with HERMES data* asymmetries are functions of $x, z, \mathbf{P}_{h \perp}, y$ and scale μ
butexpld data are integrated asym for one variable at a time
* integrated asymare estimated by integrating over the variables in the comesponding kinematical limits
kinematical limitsfor HERMES
$0.023 \leq x \leq 0.4$,
$0.1 \leq y \leq 0.95$
$0.2 \leq z \leq 0.7$
red: QCD evolution blue: parameter evol
h_{1} at initial scale

f_{1}^{ν} evolved to $\mu^{2}=2.5 \mathrm{GeV}^{2}$

comparison with COMPASS data

red: QCD evolution blue: parameter evol

model predictions for other SSAs [HERMES data]

prediction for Electron-Ion collider

- EIC: future collider [Ref. A. Deshpande's talk]
- We predict the Collins asymmetry for EIC kinematics at $\sqrt{s}=45 \mathrm{GeV}$ and $\mu^{2}=100 \mathrm{GeV}^{2}$

```
0.001<x<0.4,\quad0.2<z<0.8,
0.05< P
```


some remarks:

- Model prediction: $A_{U T}^{\sin \left(3 \delta_{h}-\phi_{s}\right)}$ is suppressed by a factor of $P_{h_{\perp}}^{2} / M^{2}$ compared to $A_{U T}^{\sin \left(\sigma_{h}+\phi_{s}\right)}$ and expected to be small, expt result: very close to zero.
- parameter evolution: follows DGLAP evolution. But TMDs don't follow DGLAP. SSAs involve ratios of TMDs and FFs. Interestingly parameter evolution predicts SSAs very well!
- proper QCD evolution for all polarized TMDs are required for better predictions!

Double Spin Asymmetries(DSA)

- when both the incoming lepton and the proton are polarized $=>$ DSA
- DSAs measured in many experiments for longitudinally polarized lepton and long/ transversely polarized proton.
- SSAs discussed here are proportional to Collins function

$$
H_{1}^{\perp}\left(z, \mathbf{k}_{\perp}\right)
$$

- DSAs are proportional to chiral even FF $D_{1}^{h / \nu}\left(z, \mathbf{k}_{\perp}\right)$

DSA: comparison with HERMES data:

Integrated DSAs

- DSAs integrated over transverse momentum, defined in terms of helicity PDFs

$$
\hat{A}_{L L}^{P}(x, z, \mu)=\frac{\sum_{\nu} e_{\nu}^{2} g_{1}(x, \mu) D_{1}^{h / \nu}(z, \mu)}{\sum_{\nu} e_{\nu}^{2} f_{1}(x, \mu) D_{1}^{h / \nu}(z, \mu)}
$$

comparison with
HERMES data

* all the distributions are taken at $\mu^{2}=2.5 \mathrm{GeV}^{2}$.
* considered bin averaged value of $z=0.46$.
- If no final hadron is observed [DIS], the DSA for proton is given by

$$
A_{1}^{P}=\frac{\sum_{\nu} e_{\nu}^{2} g_{1}(x)}{\sum_{\nu} e_{\nu}^{2} f_{1}(x)}
$$

- does not involve any frag. function.

inequalities

\star SSA and DSA satisfy a Soffer bound type inequality

another inequality

$$
\left|\frac{\mathbf{P}_{h \perp}^{2}}{2 M^{2}} A_{U T}^{\sin \left(3 \phi_{h}-\phi_{s}\right)}\left(P_{h \perp}\right)\right| \leq \frac{1}{2}\left|A_{U U}\left(P_{h \perp}\right)-A_{L L}\left(P_{h \perp}\right)\right|
$$

some equalities:

\star ratio of asymmetries associated with same TMDs

$$
\begin{aligned}
\frac{A_{U L}^{\sin \left(2 \phi_{h}\right)} /\left(z P_{h \perp}\right)}{A_{U L}^{\sin \left(\phi_{h}\right)}\left\langle P_{h \perp}^{2}\right\rangle_{C} /\left\langle\hat{m}_{\perp}^{2}\right\rangle} & =(-Q) \frac{1-y}{2(2-y) \sqrt{1-y}} \\
\frac{A_{L L}}{A_{L L}^{\cos \phi_{h}}\left\langle P_{h \perp}^{2}\right\rangle /\left(z P_{h \perp}\left\langle p_{\perp}^{2}\right\rangle_{x}\right)} & =(-Q) \frac{1-(1-y)^{2}}{4 y \sqrt{1-y}} \\
\frac{A_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)} /\left(z P_{h \perp}\right)}{A_{L T}^{\cos \phi_{S}}\left\langle P_{h \perp}^{2}\right\rangle /\left\langle\hat{n}_{\perp}^{2}\right\rangle} & =(-Q) \frac{1-(1-y)^{2}}{2 y \sqrt{1-y}} \\
\frac{A_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}}{A_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\left\langle P_{h \perp}^{2}\right\rangle /\left(z P_{h \perp}\left\langle p_{\perp}^{2}\right\rangle_{x}\right)} & =(-Q) \frac{1-(1-y)^{2}}{2 y \sqrt{1-y}}
\end{aligned}
$$

RHS indep of $\mathrm{x}, \mathrm{z}, \mathrm{P} _\mathrm{h}$
where

$$
\begin{aligned}
& \left\langle\hat{m}_{\perp}^{2}\right\rangle=\left[\left\langle k_{\perp}^{2}\right\rangle_{C}\left\langle P_{h \perp}^{2}\right\rangle_{C}+z\left\langle p_{\perp}^{2}\right\rangle_{x}\left(P_{h \perp}^{2}-\left\langle P_{h \perp}^{2}\right\rangle_{C}\right)\right] . \\
& \left\langle\hat{n}_{\perp}^{2}\right\rangle=\left[\left\langle k_{\perp}^{2}\right\rangle\left\langle p_{\perp}^{2}\right\rangle+z^{2} P_{h \perp}^{2}\left\langle p_{\perp}^{2}\right\rangle\right]
\end{aligned}
$$

ratios of SSA and DSA

- Ratio for π^{-}is larger than π^{+}

favored
fragmentations:

$\mathrm{u} \rightarrow \mathrm{pi}+$
 $\mathrm{d} \rightarrow \mathrm{pi}^{-}$

ratio of the FFs for d is larger than u

bow much the axial vector diquark contribute?

- we evaluate the SSAs with $C_{V V}=0$ i.e., without uu - axial vector diquark.
black dot-dashed
line: $C_{V V}=0$

for pi+ channel: uu contributes in unfavored FF for pi- channel: uu contributes in favored FF

Sivers \& Boer-Mulders Asymmetries

[DC,T. Maji, A. Mukherjee, in preparation]

- Sivers and Boer-Mulders functions are T-odd.
- Require a complex phase in the LFWFs.
- Sivers function: distibution of unpolarized quark inside a transversely polarized proton.
- Boer-Mulders function: transversely polarized quark inside an unpolarized proton.
- Sivers/Boer-Mulders asymmetries: experimentally observed.
- both are process dependent.
- Both are studied in diff. models.
- LFWFs modified to incorporate the FSI.

modified LFWFs

[D.S Hwang, 1003.0867]

LFWF $\quad \psi_{\lambda \Lambda}^{q}\left(x, p_{\perp}\right)=N^{q} f\left(x, p_{\perp}, \lambda, \Lambda\right) \phi_{i}^{q}\left(x, p_{\perp}\right) \quad$ modifies to

$$
\psi_{\lambda \Lambda}^{q}\left(x, p_{\perp}\right)=N^{q} f\left(x, p_{\perp}, \lambda, \Lambda\right)\left(1+i \frac{e_{1} e_{2}}{8 \pi}\left(p_{\perp}^{2}+B\right) g_{i}\right) \phi_{i}^{q}\left(x, p_{\perp}\right)
$$

$$
\begin{aligned}
& g_{1}=\int_{0}^{1} d \alpha \frac{-1}{\alpha(1-\alpha) \mathbf{p}_{\perp}^{2}+\alpha m_{g}^{2}+(1-\alpha) B} \\
& g_{2}=\int_{0}^{1} d \alpha \frac{-\alpha}{\alpha(1-\alpha) \mathbf{p}_{\perp}^{2}+\alpha m_{g}^{2}+(1-\alpha) B}
\end{aligned}
$$

$$
B=x(1-x)\left(-M^{2}+\frac{m_{q}^{2}}{x}+\frac{m_{D}}{1-x}\right)
$$

Sivers \& Boer-Mulders functions

$$
\text { Sivers } \quad f_{1 T}^{\perp \nu}\left(x, \mathbf{p}_{\perp}^{2}\right)=\left(C_{S}^{2} N_{S}^{\nu 2}-C_{A}^{2} \frac{1}{3} N_{0}^{\nu 2}\right) f^{\nu}\left(x, \mathbf{p}_{\perp}^{2}\right)
$$

Boer-Mulders $h_{1}^{\perp \nu}\left(x, \mathbf{p}_{\perp}^{2}\right)=\left(C_{S}^{2} N_{S}^{\nu 2}+C_{A}^{2}\left(\frac{1}{3} N_{0}^{\nu 2}+\frac{2}{3} N_{1}^{\nu 2}\right)\right) f^{\nu}\left(x, \mathbf{p}_{\perp}^{2}\right)$,

$$
\begin{align*}
f^{\nu}\left(x, \mathbf{p}_{\perp}^{2}\right)= & -C_{F} \alpha_{s}\left[\mathbf{p}_{\perp}^{2}+x(1-x)\left(-M^{2}+\frac{m_{D}^{2}}{1-x}+\frac{m_{q}^{2}}{x}\right)\right] \frac{1}{\mathbf{p}_{\perp}^{2}} \ln \left[1+\frac{\mathbf{p}_{\perp}^{2}}{x(1-x)\left(-M^{2}+\frac{m_{D}^{2}}{1-x}+\frac{m_{q}^{2}}{x}\right)}\right] \\
& \times \frac{\ln (1 / x)}{\pi \kappa^{2}} x^{a_{1}^{\nu}+a_{2}^{\nu}-1}(1-x)^{b_{1}^{\nu}+b_{2}^{\nu-1}} \exp \left(-\frac{\mathbf{p}_{\perp}^{2} \ln (1 / x)}{\kappa^{2}(1-x)^{2}}\right), \tag{18}
\end{align*}
$$

write

$$
h_{1}^{\perp \nu}\left(x, \mathbf{p}_{\perp}^{2}\right) \simeq \lambda^{\nu} f_{1 T}^{\perp \nu}\left(x, \mathbf{p}_{\perp}^{2}\right)
$$

	λ^{u}	λ^{d}
LFQDM	2.29	-1.08
Phenomenological fit	2.1 ± 0.1	-1.11 ± 0.02

fit to HERMES/ [Barone,Melis, Prokudin,PRD8i,II4026] COMPASS data

Sivers Asymmetry

- Sivers asym is extracted by the weigh factor $\sin \left(\phi_{h}-\phi_{S}\right)$

[A. Airapetian et al.[HERMES Coll], PRL 103,152002]

Boer-Mulders Asymmetry

- extracted with the weight factor $\cos 2 \phi_{h}$

[F. Giordano et al.[HERMES coll], AIP conf. proc.II49, 423]

summary and conclusion

- We presented results for both SSA and DSA in a light front quark-diquark model.
- scale evolution of all TMDs are not known.
- polarized TMDs are taken at initial scale. Two diffeent evol. scheme used for unpol TMD.
- SSA and DSA are compared with HERMES and COMPASS data. Good agreement!
- Different relations among SSA and DSA are found. Interesting to check in other models.
- LFWFs modified to have complex phase factor which is required for Sivers \& Boer Mulders functions.
- Sivers $->$ Lensing function $\simeq \frac{1}{4(1-x)}$
- Sivers \& Boer-Mulders asymmetries are consistent with experimental data.
$\mathcal{T}^{\mathcal{H}} \mathfrak{A} \mathcal{N} \mathfrak{K}$
you

