Transverse single spin asymmetries at large Feynman x in the STAR experiment at RHIC

Mriganka Mouli Mondal (for the STAR Collaboration)
Institute of Physics, Bhubaneswar

Outline

\diamond Transverse Single Spin Asymmetries
\diamond The STAR experiment and Forward Meson Spectrometer (FMS)
\diamond EM-Jets in forward and central rapidity and A_{N} measurements at RHIC Run 11 at $\mathrm{Vs}=500 \mathrm{GeV}$
\diamond STAR Forward Upgrades

$\pi^{0} \mathrm{~A}_{\mathrm{N}}$ Measurements at Forward Rapidity

Inclusive $\boldsymbol{\pi}^{0}$ production

$$
p \uparrow+p \rightarrow \pi^{0}+X
$$

Transverse Single Spin Asymmetry

$$
A_{N}=\frac{\delta \sigma^{\uparrow}-\delta \sigma^{\downarrow}}{\delta \sigma^{\uparrow}+\delta \sigma^{\downarrow}}
$$

$$
x_{F}=2 p_{z} / v s
$$

Sivers and Collins effect

Sivers effect : the correlation between the transverse momentum (\mathbf{k}_{t}) of the struck quark and the spin (S) and momentum (p) of its parent nucleon

Sivers distribution

$$
f_{q / p^{\uparrow}}\left(x, k_{t}\right)=f_{1}^{q}\left(x, k_{t}^{2}\right)-f_{1 t}^{\perp q}\left(x, k_{t}\right) \frac{\mathbf{S} \cdot\left(\mathbf{k}_{\mathbf{t}} \times \hat{\mathbf{p}}\right)}{M}
$$

Collins effect :spin-momentum correlation in the hadronization process

$$
\mathbf{s}_{\mathbf{q}} \cdot\left(\mathbf{k}_{\mathbf{q}} \times \mathbf{p}_{\mathbf{t}}\right)
$$

$\mathrm{s}_{\mathrm{q}}=$ spin of the fragmenting quark
$\mathrm{k}_{\mathrm{q}}=$ momentum direction of the quark
$p_{t}=$ transverse momentum of hadron with respect to the direction of the fragmenting quark

D. Sivers, Phys. Rev. D 41, 83 (1990)
J. C. Collins, Nucl. Phys. B396, 161 (1993)

Sensitive to proton spin- parton
transverse motion correlations

Separating Sivers and Collins effects

$$
\propto \underbrace{\bar{f}_{\text {Sivers distribution }}^{\perp q}\left(x, k_{\perp}^{2}\right)}_{\mathrm{A}_{\mathrm{N}}=} \cdot D_{q}^{h}(z)
$$

Quark transverse Collins FF spin distribution

Observed transverse single-spin asymmetries of inclusive hadrons could arise from the Sivers effect or Collins effect, or from a linear combination of the two
need to move beyond inclusive production

- Sivers effect : Full Jets, Direct photons, Drell-Yan
- Collins effect : azimuthal orientation of particles within a jet

RHIC : the world's first and only polarized proton collider

For 2011 : Average Blue Beam Polarization = 51.6\% (Transverse) Luminosity $=22 \mathrm{pb}^{-1}$

Forward ECAL in STAR

Forward Meson Spectrometer (FMS) - 2011 :
-- Pb glass EM calorimeter covering $2.5<\eta<4.0$
-- Detect π^{0}, η, direct photons and jet-like events in the kinematic region where transverse spin asymmetries are known to be large.

Photons in FMS

Towers \rightarrow Clusters \rightarrow
(shower shape fits)
Photon candidates
(photons)

EM-Jet characteristics

A_{N} vs. EM-Jet Energy

π^{0}-Jets -
2γ-EM-Jets

$$
\begin{gathered}
\mathrm{m}_{\nu \nu}<0.3 \\
\mathrm{Z}_{\nu \psi}<0.8
\end{gathered}
$$

$2 \boldsymbol{\gamma}$-EM-Jets ($\boldsymbol{\eta}+$ continuum) $m_{y \gamma}>0.3$

EM-Jets photons >2

Isolated $\boldsymbol{\pi}^{0}$:

I) reconstructed π^{0} for 2-photon jet
II) no photon within physical cone (eg. 70 mR) of reconstructed π^{0}
\diamond Isolated π^{0} 's have large asymmetries consistent with previous observation (CIPANP-2012 Steven Heppelmann)
https://indico.triumf.ca/contributionDisplay.pycontribld=349\&sessionld=44\&confld=1383
\diamond Asymmetries for jets with photons >2 events are much smaller

A_{N} for different \# photons in EM-Jets

\diamond 1-photon events, which include a large π^{0} contribution in this analysis, are similar to 2photon events
\diamond Three-photon jet-like events have a clear nonzero asymmetry, but substantially smaller than that for isolated $\pi^{0} \mathrm{~s}$
$\diamond A_{N}$ decreases as the event complexity increases (more particles in jets)
$\diamond A_{N}$ for \#photons >5 is similar to that \#photons = 5

A_{N} for correlated central jets and no central jet cases

[^0]
A_{N} for π^{0} and Collins asymmetries of π^{0}

- π^{0} is reconstructed from FMS
- Collins asymmetries of π^{0} relative to jet axis is being measured

A_{N} for π^{0} and Collins asymmetries of π^{0}

- Isolated π^{0} tend to have significantly larger asymmetries than π^{0} associated with jet activities in the vicinity.
- Sivers (EM-Jets) and/or Collins (π^{0} relative to jet axis) asymmetries are insufficient to account for the observed inclusive π^{0} single spin asymmetries.

Summary and Outlook

\diamond Jets with isolated π^{0} have large asymmetry.
$\diamond A_{N}$ decreases as the event complexity increases.
\diamond Isolated π^{0} asymmetries are smaller when there is a correlated EM-jet at mid-rapidity.
Large forward $\pi^{0} \mathrm{~A}_{\mathrm{N}}$: Comes from $2 \rightarrow 2$ parton scattering with some contribution from diffractive events?
\diamond Sivers (EM-Jets) and/or Collins (π^{0} relative to jet axis) asymmetries are insufficient to account for the observed inclusive π^{0} single spin asymmetries.

2015 : installation of FMS-Preshower and Roman pots - p+p 200 GeV longitudinal \& transverse $\mathrm{p} \uparrow+\mathrm{Au} / \mathrm{Al} 200 \mathrm{GeV}$ transverse, Spin effects in diffraction
2017 : installation of FMS-Postshower - p+p 510 GeV transverse A_{N} for Dell Yan, direct photons

Forward Upgrade ($\geqq 2021$) Overview

Requirements:

$>$ wide acceptance mid-rapidity detector with good PID ($\mathrm{p}, \mathrm{K}, \mathrm{p}$)
$>$ forward rapidities $(1.0<\eta<4.5)$ Ecal + HCal + charge identification

Forward rapidities

- $2.5<\eta<4.5$

Preshower detector
EM calorimeter

- PHENIX PbSc

Hadronic calorimeter

- $L=4 \lambda_{1}$

4-6 additional layers of Silicon Microstrip and/or small-strip Thin Gap Chamber

backup

Data point corrections and better understanding Detector with GEANT simulations

- Understanding FMS data with full PYTHIA simulations with standard STAR framework.
- Construct the matrix - \#true photon vs. \#photons detected : This would be used for correcting $A_{N, E M-\text {-ets }}$ of a certain n-photon-class from the effect of probability misidentifying to the other n-photon-clases

h16

\#photons in Jets in MC and data was not matching :

1. Attenuation was not there in GEANT energy deposition mode. GEANT is used with an attenuation factor.
2. PYTHIA tune dependencies are checked : Hard diffraction not in current scope of PYTHIA6

The Relativistic Heavy Ion Collider

BRDDKHRMEN
 NATIONAL LABORATORY

$$
\mathbf{A u}+\mathbf{A u}+\mathbf{C u}+\mathbf{A u}
$$

Polarized $\mathbf{p}+\mathrm{p}, \mathbf{d}+\mathbf{A u}$
Polarized p $+\mathbf{A u}$ RHIC is a QCD lab

RHIC Physics Focus

1) Heavy-ion Program
-- Study medium properties, EoS
--pQCD in hot and dense medium
2) RHIC beam energy scan
--search of critical point
-- chiral symmetry restoration
3) Longitudinal and transverse spin programs --Study proton intrinsic properties
4) Forward program
-- spin structure of proton
--Study of low x properties and search for CGC
Tagged forward physics
--Study elastic and inelastic processes
--Investigate gluonic exchanges and search for gluonic matter

TSSA - two theoretical framework

Spin-dependent transverse momentum dependent (TMD) function S_{T}. $\mathbf{P x k}_{\mathrm{T}}$
Brodsky, Hwang, Schmidt, 02
Collins, 02, Ji, Belitsky, Yuan, 02
+Collins fragmentation functions
Twist-3 quark-gluon correlations
Efremov \& Teryaev: 1982 \& 1984
Qiu \& Sterman: 1991 \& 1999

+ Twist three fragmentation functions

Need 2 scales Q^{2} and p_{\dagger}
Remember pp:
most observables one scale
Exception:
DY, W/Z-production
Need 2 scales
\mathbf{Q}^{2} and $p_{\boldsymbol{p}}$
Remember pp:
most observables one scale
Exception:
DY, W/Z-production

Collinear/
$Q, Q_{T} \gg \Lambda_{Q C D}$
$\mathrm{P}_{\mathrm{T}} \sim \mathrm{Q}$

Need only 1 scale
Q^{2} or $\mathrm{P}_{\boldsymbol{t}}$
But
should be of reasonable size should be applicable to most pp observables
$A_{N}\left(\pi^{0} / \gamma /\right.$ jet $)$

A_{N} from fits

$\triangleleft A_{N}$ is calculated from $p 0+P \times A_{N} \cos (\varphi)$ fits over each fill on

$$
\frac{\mathbf{N} \uparrow(\phi)-N_{\downarrow}(\phi)}{\mathbf{N} \uparrow(\phi)+N_{\downarrow}(\phi)}=p 0+P_{\times} A_{N} \operatorname{Cos}(\phi)
$$

p0 = relative luminosity
$\mathrm{A}_{\mathrm{N}}=$ asymmetry
$\mathbf{P}=$ polarization
--- A_{N} 's are corrected for polarization values from RHIC-fills
--- A_{N} and $\chi^{2} /$ NDF are calculated over entire fills

For 2-photon isolated π^{0}

For each slice of data averaged over ~18 fills. Fits are well in control.

A_{N} with mid-rapidity activities

- Case-I : having no central jet
- Case-II : having a central jet

$\Delta \Phi$ correlations between forward and central EM-Jets

Number of photons for forward EMJets :

\diamond Correlation is stronger for more N_photon Jets
For higher EMJets energy, correlation grows stronger

RHIC Cold QCD Schedule

Year	$\sqrt{s}(\mathrm{GeV})$	Delivered Luminosity	Scientific Goals	Observable	Required Upgrade
2017	$\mathrm{p}^{\dagger} \mathrm{p}$ @ 510	$\begin{aligned} & 400 \mathrm{pb}^{-1} \\ & 12 \text { weeks } \end{aligned}$	Sensitive to Sivers effect non-universality through TMDs and Twist-3 $T_{q, F}(x, x)$ Sensitive to sea quark Sivers or ETQS function Evolution in TMD and Twist-3 formalism Transversity, Collins FF, linearly pol. Gluons, Gluon Sivers in Twist-3 First look at GPD Eg	A_{N} for $\gamma, \mathrm{W}^{*}, \mathrm{Z}^{0}$, DY $A_{v T}^{\sin \left(\phi_{s}-2 \phi_{h}\right)} A_{v T}^{\sin \left(\phi_{s}-\phi_{h}\right)}$ modulations of h^{*} in jets, $A_{U T}^{\sin \left(\phi_{s}\right)}$ for jets $A_{U T}$ for J / Ψ in UPC	$A_{N}{ }^{D I}$: Postshower to FMS@STAR None None
2023	$\mathrm{p}^{\top} \mathrm{p} @ 200$	$\begin{aligned} & 300 \mathrm{pb}^{-1} \\ & 8 \text { weeks } \end{aligned}$	subprocess driving the large A_{N} at high x_{F} and η evolution of ETQS fct. properties and nature of the diffractive exchange in $\mathrm{p}+\mathrm{p}$ collisions.	A_{N} for charged hadrons and flavor enhanced jets A_{N} for γ A_{N} for diffractive events	Yes Forward instrum. None None
2023	$\mathrm{p}^{\dagger} \mathrm{Au} @ 200$	$1.8 \mathrm{pb}^{-1}$ 8 weeks	What is the nature of the initial state and hadronization in nuclear collisions Nuclear dependence of TMDs and nFF Clear signatures for Saturation	$R_{\text {pAA }}$ direct photons and DY $A_{U T}^{\sin \left(\phi_{s}-\phi_{h}\right)}$ modulations of $h^{ \pm}$in jets, nuclear FF Dihadrons, γ-jet, h-jet, diffraction	$R_{p, d u}(\mathrm{DY}): \mathrm{Yes}$ Forward instrum. None Yes Forward instrum.
2023	$\mathrm{p}^{\top} \mathrm{Al} @ 200$	$\begin{aligned} & 12.6 \mathrm{pb}^{-1} \\ & 8 \text { weeks } \end{aligned}$	A-dependence of nPDF , A-dependence of TMDs and nFF A-dependence for Saturation	$R_{\text {pAl }}$ direct photons and DY $A_{v \tau}^{\sin \left(\phi_{s}-\phi_{h}\right)}$ modulations of h^{*} in jets, nuclear FF Dihadrons, γ-jet, h-jet, diffraction	$R_{p A l}(\mathrm{DY}):$ Yes Forward instrum. None Yes Forward instrum.

STAR future measurements

Observable without fragmentation func. : Drell-Yan, $W^{ \pm} / Z$, jets, direct photons

$Y_{\text {direct }}$ measurements as a test of twist-3 framework

STAR :
pp 200GeV, $\mathrm{L}=40 / \mathrm{pb}, \mathrm{P}=60 \%$

STAR forward goals for data taking on 2015

- Direct Photon x-section \& A_{N} at $\mathrm{pT}>2.0 \mathrm{GeV}$ (FMS + Pre-shower)
- Pio A_{N} - Jetty vs Isolated :
pp vs $\mathrm{pA}(\mathrm{p}+\mathrm{Au}, \mathrm{p}+\mathrm{Al})$, diffractive vs non-diffractive (Roman Pots)
- Study di-electron channel (J/psi) towards DY

[^0]: \diamond Asymmetries for the forward isolated π^{0} are low when there is a correlated away-side jet.

