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Overview

I Introduction to infrared singularities.

I Webs in QCD for multiparticle scattering.

I Calculating webs: the bootstrap approach.

I Outlook.
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Infrared divergences

I In scattering amplitudes, get singularities due to gluon
emission at large distances.

I Due to integrals over
gluon positions:∫

dnx

I Uncertainty principle ⇒
equivalent to emission of
zero energy gluons.

I Common to abelian / non-abelian gauge theories, including
gravity.
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Why study IR singularities?

I Singularities cancel for suitably inclusive observables, once real
and virtual diagrams are combined (Block, Nordsieck).

I However, large kinematic contributions remain, which need to
be resummed to all orders.

I Also more formal applications of IR singularities e.g. all-order
insights in (S)YM theory.

I IR singularities related to Wilson lines, which occur in many
contexts (e.g. TMDs).
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Soft-collinear factorisation
I The general schematic form of an amplitude is (Mueller,

Collins, Sen, Korchemsky, Magnea, Sterman):

p
1

p
2 p

3

p
L

A = H · S ·
L∏

i=1

Ji
Ji
.

I Soft function is a VEV of Wilson lines:

S = 〈0|Φ1 . . .Φn|0〉 ,
where

Φi = P exp

[
iTa

∫
dxµ Aµ

]
.
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Exponentiation

I Calculating IR singularities then amounts to calculating
Feynman diagrams for multiple Wilson lines meeting at a
point.

I Furthermore, one may show that the soft function has an
exponential form. Schematically:

S ∼ exp

[∑
W

W

]
.

I Here W are certain special diagrams called webs.

I Precisely what these look like depends on the theory.
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Webs in QED

I In QED, one may show that the exponent of the soft function
contains only connected subdiagrams (“QED webs”):

I Originally derived using combinatoric methods (Yennie,
Frautschi, Suura), and recently rederived using path integral
methods (Laenen, Stavenga, White).

I An example is shown for two Wilson lines, but the definition
of a QED web generalises to the multiline case.
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Webs in QED - Comments

I Exponentiation implies that IR singularities get summed up to
all orders in perturbation theory.

I We need only calculate a subset of diagrams at each order.

I Note also that any large logs in perturbation theory which are
related to IR singularities will also be summed up to all orders
in perturbation theory (“resummation”).

I In QED with no propagating fermions, the exponent is
one-loop exact.
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Webs in QCD

I Webs in QED are relatively simple (connected subdiagrams).

I In QCD, things are complicated, as emission vertices for soft
gluons carry non-commuting colour matrices.

I One may still show that the soft function exponentiates, albeit
with a more complicated form.

I Furthermore, there is a distinction between the case of two
Wilson lines meeting at a point, and more than two.

I Let’s look at the former case first...
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Webs in QCD
I For two line processes, webs can be classified as the set of

irreducible diagrams (Gatheral, Frenkel, Taylor, Sterman).

I Includes the diagrams from the QED case, but also additional
(non-connected) subgraphs.

I Diagrams have modified colour weights, so that the soft
function has the form

S ∼ exp

{∑
W

C̃ (W )F(W )

}
,

with C̃ (W ) and F(W ) the colour / kinematic parts of W .
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Webs in QCD - Comments

I More complicated than abelian case, but IR singularities still
predicted to all orders in perturbation theory, from a subset of
diagrams.

I We can think of the exponentiated colour factors C̃ as picking
out which diagrams contribute.

I For two Wilson lines, webs are single irreducible diagrams.

I The full multiline case has only recently been considered
(Mitov, Sterman, Sung; Gardi, Laenen, Stavenga, White;
Vladimirov).

I Results indicate that, in general, webs are closed sets of
diagrams, which can in fact be reducible.
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Multiparton webs in QCD
I Consider the following two diagrams:

(a) (b)

i

j j

i

related by gluon permutations.
I Each of these has a kinematic factor F(D) (D = a, b) and a

colour factor C (D).
I The contribution to the exponent of the soft function turns

out to be(
F(a)
F(b)

)T (
C̃ (a)

C̃ (b)

)
=

(
F(a)
F(b)

)T
1

2

(
1 −1
−1 1

)(
C (a)
C (b)

)
.
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Multiparton webs in QCD

I The set of diagrams mixes in the exponent.

I Colour and kinematic information is entangled in a non-trivial
way.

I It thus makes sense to consider the set of two diagrams as a
single web.

I Associated with the web is a web mixing matrix, that tells us
how the kinematic and colour information gets mixed up.

I The interpretation of multiparton webs as sets of diagrams is
backed up by further study of renormalisation properties
(Gardi, Smillie, White).
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Multiparton webs - General structure

I In general, webs are closed sets of diagrams, related by
permutations of gluons on the external lines.

I The contribution of each set to the exponent of the soft
function is ∑

D,D′

FDRDD′CD′ ,

where RDD′ is a web-mixing matrix.

I The study of webs (and thus IR singularities) in multiparton
scattering is equivalent to the study of these matrices.

I They encode a huge amount of physics!

I They also have interesting properties.
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Web mixing matrices

I We observe the following interesting properties:

1. Rows of web mixing matrices sum to zero i.e.∑
D′

RDD′ = 0.

2. The matrices are idempotent i.e. R2 = R. This implies they
have eigenvalues 0 and 1.

I We are starting to understand the physics of these results.

I Proofs use statistical physics methods (“the replica trick”),
and enumerative combinatorics (Gardi, White).

I Combinatorics related to partially ordered sets (posets):
Dukes, Gardi, McAslan, Scott, Steingrimsson, White.
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A four loop example

[[1,2],[3,1],[3,4],[2,4]] [[1,2],[2,3],[4,3],[4,1]] [[1,2],[3,2],[3,4],[4,1]] [[1,2],[2,3],[3,4],[1,4]]

[[1,2],[3,2],[4,3],[1,4]] [[1,2],[1,3],[4,3],[4,2]] [[1,2],[3,2],[3,4],[1,4]] [[1,2],[1,3],[3,4],[4,2]]

[[1,2],[3,1],[4,3],[4,2]] [[1,2],[1,3],[4,3],[2,4]] [[1,2],[1,3],[3,4],[2,4]] [[1,2],[2,3],[4,3],[1,4]]

[[1,2],[3,1],[3,4],[4,2]] [[1,2],[3,2],[4,3],[4,1]] [[1,2],[3,1],[4,3],[2,4]] [[1,2],[2,3],[3,4],[4,1]]
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Four loop mixing matrix (×24)


6 −6 2 2 −2 4 −4 2 −2 −2 −4 4 −4 4 0 0

−6 6 −2 −2 2 −4 4 −2 2 2 4 −4 4 −4 0 0

2 −2 6 −2 2 4 −4 −2 2 −6 4 4 −4 −4 0 0

2 −2 −2 6 2 4 −4 −2 −6 2 −4 −4 4 4 0 0

−2 2 2 2 6 4 −4 −6 −2 −2 4 −4 4 −4 0 0

2 −2 2 2 2 4 −4 −2 −2 −2 0 0 0 0 0 0

−2 2 −2 −2 −2 −4 4 2 2 2 0 0 0 0 0 0

2 −2 −2 −2 −6 −4 4 6 2 2 −4 4 −4 4 0 0

−2 2 2 −6 −2 −4 4 2 6 −2 4 4 −4 −4 0 0

−2 2 −6 2 −2 −4 4 2 −2 6 −4 −4 4 4 0 0

−2 2 2 −2 2 0 0 −2 2 −2 4 0 0 −4 0 0

2 −2 2 −2 −2 0 0 2 2 −2 0 4 −4 0 0 0

−2 2 −2 2 2 0 0 −2 −2 2 0 −4 4 0 0 0

2 −2 −2 2 −2 0 0 2 −2 2 −4 0 0 4 0 0

−18 −6 −6 −6 −18 12 12 −6 −18 −18 12 12 12 12 24 0

−6 −18 −18 −18 −6 12 12 −18 −6 −6 12 12 12 12 0 24





C [[1, 2], [3, 1], [3, 4], [2, 4]]

C [[1, 2], [2, 3], [4, 3], [4, 1]]

C [[1, 2], [3, 2], [3, 4], [4, 1]]

C [[1, 2], [2, 3], [3, 4], [1, 4]]

C [[1, 2], [3, 2], [4, 3], [1, 4]]

C [[1, 2], [1, 3], [4, 3], [4, 2]]

C [[1, 2], [3, 2], [3, 4], [1, 4]]

C [[1, 2], [1, 3], [3, 4], [4, 2]]

C [[1, 2], [3, 1], [4, 3], [4, 2]]

C [[1, 2], [1, 3], [4, 3], [2, 4]]

C [[1, 2], [1, 3], [3, 4], [2, 4]]

C [[1, 2], [2, 3], [4, 3], [1, 4]]

C [[1, 2], [3, 1], [3, 4], [4, 2]]

C [[1, 2], [3, 2], [4, 3], [4, 1]]

C [[1, 2], [3, 1], [4, 3], [2, 4]]

C [[1, 2], [2, 3], [3, 4], [4, 1]]


17 / 25



Connected colour factors

I Web mixing matrices imply that only certain combinations of
web diagrams survive in the exponent.

I Each is associated with a specific combination of colour
factors.

I We now know that these colour factors correspond to those of
connected soft gluon diagrams (Gardi, Smillie, White).

I Generalises a similar result (the non-Abelian exponentiation
theorem) known for the two-line case (Gatheral, Frenkel,
Taylor).
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Calculating web diagrams

I Previously, IR singularities have been known to two-loop order
in the exponent (Sterman, Aybat, Dixon, Kidonakis, Mitov,
Sung, Becher, Neubert, Beneke, Falgari, Schwinn, Ferroglia,
Pecjak, Yang).

I The web language has allowed us to extend this to three-loop
order (Gardi, Laenen, Stavenga, Smillie, White, Almelid,
Duhr).

I See also calculations by Korchemsky, Henn, Huber, Grozin,
Marquard, Correa, Maldacena, Sever.

I The key quantity to calculate is the soft anomalous dimension
ΓS , which controls the UV singularities of Wilson line
products.

I It is this quantity that enters resummation formulae etc.
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Soft anomalous dimension for massless particles

I Recently, ΓS was calculated for the special case of Wilson lines
corresponding to massless particles (Almelid, Duhr, Gardi).

I Most complicated diagram took
several years to complete.

I Final result has a very simple
form, if expressed in the right
way!

I The m-loop massless soft anomalous dimension for n particles
can be written (Becher, Neubert; Gardi, Magnea)

ΓS = Γdip.
S + ∆

(m)
n ,

where the first term depends only on pairs of particles.

I The correction term starts at three-loop order.
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The correction function ∆
(m)
n

I If βi be the 4-velocity of the i th Wilson line, and Ti a colour
generator on line i , then

∆(3)
n ({ρijkl} , {Ti}) = 16 fabe fcde

{
− C

n∑
i=1

∑
1≤j<k≤n

j,k 6=i

{
Ta

i ,T
d
i

}
Tb

j T
c
k

+
∑

1≤i<j<k<l≤n

[
Ta

i T
b
j T

c
kT

d
l F(ρikjl , ρiljk) + Ta

i T
b
kT

c
j T

d
l F(ρijkl , ρilkj)

+ Ta
i T

b
l T

c
j T

d
k F(ρijlk , ρiklj)

]}
,

where C = ζ5 + 2ζ2ζ3, and F is a function of conformally
invariant cross-ratios

ρijkl =
(βi · βj)(βk · βl)
(βi · βk)(βj · βl)

.

21 / 25



The function F
I The non-trivial kinematic dependence is simplified by

introducing the (in general complex) variables

zijkl z̄ijkl = ρijkl , (1− zijkl)(1− z̄ijkl) = ρilkj .

I Then one has

F(ρijkl , ρilkj) = F (1− zijkl)− F (zijkl),

where

F (z) = L10101(z) + 2ζ2[L001(z) + L100(z)],

and Lw (z) is a single-valued harmonic polylogarithm
(SVHPL), introduced by Brown.
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The bootstrap approach
I The simplicity of the three-loop soft anomalous dimension

suggests an alternative way to calculate it (Almelid, Duhr,
Gardi, McLeod, White).

I By mapping Wilson lines to the Riemann sphere, one can show

that the correction function ∆
(3)
n can only depend on SVHPLs.

I One can then write a general ansatz for C and F (z), and
constrain the coefficients using:

1. Bose symmetry.
2. Colour conservation.
3. Uniform transcendental weight.
4. Collinear limits (Dixon, Gardi, Magnea; Almelid, Duhr, Gardi).
5. Regge limits (Caron-Huot, Gardi, Vernazza).

I ∆
(3)
n is then fixed up to an overall constant!

I This is called a bootstrap approach. Previously used in N = 4
SYM theory, but works for QCD too!
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Conclusion

I Infrared singularities are important for both hep-ph and
hep-th reasons.

I Much recent progress in calculating the soft anomalous
dimension that controls them.

I Webs provide a highly efficient language for higher order
calculations in QCD and related theories.

I New powerful techniques (e.g. bootstrap approach) greatly
simplify calculations at three loops and beyond!

24 / 25



Open Problems

I What is the general structure of web mixing matrices?

I Are their combinatoric properties useful for something else?

I Can we calculate all 3-loop Wilson line diagrams for massive
particles?

I Can we use the bootstrap at four loops and beyond?

I Can we use these results to extend resummation?

I Can we use webs beyond the soft approximation?

I Are webs useful for TMDs, GPDs, or other LC2017-friendly
subjects?
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