Chris White, Queen Mary University of London

Wilson lines and webs in higher order QCD

Light Cone 2017, Mumbai

Overview

- Introduction to infrared singularities.
- Webs in QCD for multiparticle scattering.
- Calculating webs: the bootstrap approach.
- Outlook.

Infrared divergences

- In scattering amplitudes, get singularities due to gluon emission at large distances.

- Due to integrals over gluon positions:

$$
\int d^{n} x
$$

- Uncertainty principle \Rightarrow equivalent to emission of zero energy gluons.
- Common to abelian / non-abelian gauge theories, including gravity.

Why study IR singularities?

- Singularities cancel for suitably inclusive observables, once real and virtual diagrams are combined (Block, Nordsieck).
- However, large kinematic contributions remain, which need to be resummed to all orders.
- Also more formal applications of IR singularities e.g. all-order insights in (S)YM theory.
- IR singularities related to Wilson lines, which occur in many contexts (e.g. TMDs).

Soft-collinear factorisation

- The general schematic form of an amplitude is (Mueller, Collins, Sen, Korchemsky, Magnea, Sterman):

$$
\mathcal{A}=\mathcal{H} \cdot \mathcal{S} \cdot \prod_{i=1}^{L} \frac{J_{i}}{\mathcal{J}_{i}}
$$

- Soft function is a VEV of Wilson lines:

$$
\mathcal{S}=\langle 0| \Phi_{1} \ldots \Phi_{n}|0\rangle,
$$

where

$$
\Phi_{i}=\mathcal{P} \exp \left[i \mathbf{T}^{a} \int d x^{\mu} A_{\mu}\right] .
$$

Exponentiation

- Calculating IR singularities then amounts to calculating Feynman diagrams for multiple Wilson lines meeting at a point.
- Furthermore, one may show that the soft function has an exponential form. Schematically:

$$
\mathcal{S} \sim \exp \left[\sum_{W} W\right]
$$

- Here W are certain special diagrams called webs.
- Precisely what these look like depends on the theory.

Webs in QED

- In QED, one may show that the exponent of the soft function contains only connected subdiagrams ("QED webs"):

- Originally derived using combinatoric methods (Yennie, Frautschi, Suura), and recently rederived using path integral methods (Laenen, Stavenga, White).
- An example is shown for two Wilson lines, but the definition of a QED web generalises to the multiline case.

Webs in QED - Comments

- Exponentiation implies that IR singularities get summed up to all orders in perturbation theory.
- We need only calculate a subset of diagrams at each order.
- Note also that any large logs in perturbation theory which are related to IR singularities will also be summed up to all orders in perturbation theory ("resummation").
- In QED with no propagating fermions, the exponent is one-loop exact.

Webs in QCD

- Webs in QED are relatively simple (connected subdiagrams).
- In QCD, things are complicated, as emission vertices for soft gluons carry non-commuting colour matrices.
- One may still show that the soft function exponentiates, albeit with a more complicated form.
- Furthermore, there is a distinction between the case of two Wilson lines meeting at a point, and more than two.
- Let's look at the former case first...

Webs in QCD

- For two line processes, webs can be classified as the set of irreducible diagrams (Gatheral, Frenkel, Taylor, Sterman).

- Includes the diagrams from the QED case, but also additional (non-connected) subgraphs.
- Diagrams have modified colour weights, so that the soft function has the form

$$
\mathcal{S} \sim \exp \left\{\sum_{W} \tilde{C}(W) \mathcal{F}(W)\right\}
$$

with $\tilde{C}(W)$ and $\mathcal{F}(W)$ the colour / kinematic parts of W.

Webs in QCD - Comments

- More complicated than abelian case, but IR singularities still predicted to all orders in perturbation theory, from a subset of diagrams.
- We can think of the exponentiated colour factors \tilde{C} as picking out which diagrams contribute.
- For two Wilson lines, webs are single irreducible diagrams.
- The full multiline case has only recently been considered (Mitov, Sterman, Sung; Gardi, Laenen, Stavenga, White; Vladimirov).
- Results indicate that, in general, webs are closed sets of diagrams, which can in fact be reducible.

Multiparton webs in QCD

- Consider the following two diagrams:

(a)

(b)
related by gluon permutations.
- Each of these has a kinematic factor $\mathcal{F}(D)(D=a, b)$ and a colour factor $C(D)$.
- The contribution to the exponent of the soft function turns out to be

$$
\binom{\mathcal{F}(a)}{\mathcal{F}(b)}^{T}\binom{\tilde{C}(a)}{\tilde{C}(b)}=\binom{\mathcal{F}(a)}{\mathcal{F}(b)}^{T} \frac{1}{2}\left(\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right)\binom{C(a)}{C(b)} .
$$

Multiparton webs in QCD

- The set of diagrams mixes in the exponent.
- Colour and kinematic information is entangled in a non-trivial way.
- It thus makes sense to consider the set of two diagrams as a single web.
- Associated with the web is a web mixing matrix, that tells us how the kinematic and colour information gets mixed up.
- The interpretation of multiparton webs as sets of diagrams is backed up by further study of renormalisation properties (Gardi, Smillie, White).

Multiparton webs - General structure

- In general, webs are closed sets of diagrams, related by permutations of gluons on the external lines.
- The contribution of each set to the exponent of the soft function is

$$
\sum_{D, D^{\prime}} \mathcal{F}_{D} R_{D D^{\prime}} C_{D^{\prime}}
$$

where $R_{D D^{\prime}}$ is a web-mixing matrix.

- The study of webs (and thus IR singularities) in multiparton scattering is equivalent to the study of these matrices.
- They encode a huge amount of physics!
- They also have interesting properties.

Web mixing matrices

- We observe the following interesting properties:

1. Rows of web mixing matrices sum to zero i.e.

$$
\sum_{D^{\prime}} R_{D D^{\prime}}=0 .
$$

2. The matrices are idempotent i.e. $R^{2}=R$. This implies they have eigenvalues 0 and 1 .

- We are starting to understand the physics of these results.
- Proofs use statistical physics methods ("the replica trick"), and enumerative combinatorics (Gardi, White).
- Combinatorics related to partially ordered sets (posets): Dukes, Gardi, McAslan, Scott, Steingrimsson, White.

A four loop example

Four loop mixing matrix $(\times 24)$

$$
\left(\begin{array}{rrrrrrrrrrrrrrrr}
6 & -6 & 2 & 2 & -2 & 4 & -4 & 2 & -2 & -2 & -4 & 4 & -4 & 4 & 0 & 0 \\
-6 & 6 & -2 & -2 & 2 & -4 & 4 & -2 & 2 & 2 & 4 & -4 & 4 & -4 & 0 & 0 \\
2 & -2 & 6 & -2 & 2 & 4 & -4 & -2 & 2 & -6 & 4 & 4 & -4 & -4 & 0 & 0 \\
2 & -2 & -2 & 6 & 2 & 4 & -4 & -2 & -6 & 2 & -4 & -4 & 4 & 4 & 0 & 0 \\
-2 & 2 & 2 & 2 & 6 & 4 & -4 & -6 & -2 & -2 & 4 & -4 & 4 & -4 & 0 & 0 \\
2 & -2 & 2 & 2 & 2 & 4 & -4 & -2 & -2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & 2 & -2 & -2 & -2 & -4 & 4 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & -2 & -2 & -2 & -6 & -4 & 4 & 6 & 2 & 2 & -4 & 4 & -4 & 4 & 0 & 0 \\
-2 & 2 & 2 & -6 & -2 & -4 & 4 & 2 & 6 & -2 & 4 & 4 & -4 & -4 & 0 & 0 \\
-2 & 2 & -6 & 2 & -2 & -4 & 4 & 2 & -2 & 6 & -4 & -4 & 4 & 4 & 0 & 0 \\
-2 & 2 & 2 & -2 & 2 & 0 & 0 & -2 & 2 & -2 & 4 & 0 & 0 & -4 & 0 & 0 \\
2 & -2 & 2 & -2 & -2 & 0 & 0 & 2 & 2 & -2 & 0 & 4 & -4 & 0 & 0 & 0 \\
-2 & 2 & -2 & 2 & 2 & 0 & 0 & -2 & -2 & 2 & 0 & -4 & 4 & 0 & 0 & 0 \\
2 & -2 & -2 & 2 & -2 & 0 & 0 & 2 & -2 & 2 & -4 & 0 & 0 & 4 & 0 & 0 \\
-18 & -6 & -6 & -6 & -18 & 12 & 12 & -6 & -18 & -18 & 12 & 12 & 12 & 12 & 24 & 0 \\
-6 & -18 & -18 & -18 & -6 & 12 & 12 & -18 & -6 & -6 & 12 & 12 & 12 & 12 & 0 & 24
\end{array}\right)
$$

Connected colour factors

- Web mixing matrices imply that only certain combinations of web diagrams survive in the exponent.
- Each is associated with a specific combination of colour factors.
- We now know that these colour factors correspond to those of connected soft gluon diagrams (Gardi, Smillie, White).
- Generalises a similar result (the non-Abelian exponentiation theorem) known for the two-line case (Gatheral, Frenkel, Taylor).

Calculating web diagrams

- Previously, IR singularities have been known to two-loop order in the exponent (Sterman, Aybat, Dixon, Kidonakis, Mitov, Sung, Becher, Neubert, Beneke, Falgari, Schwinn, Ferroglia, Pecjak, Yang).
- The web language has allowed us to extend this to three-loop order (Gardi, Laenen, Stavenga, Smillie, White, Almelid, Duhr).
- See also calculations by Korchemsky, Henn, Huber, Grozin, Marquard, Correa, Maldacena, Sever.
- The key quantity to calculate is the soft anomalous dimension Γ_{S}, which controls the UV singularities of Wilson line products.
- It is this quantity that enters resummation formulae etc.

Soft anomalous dimension for massless particles

- Recently, Γ_{S} was calculated for the special case of Wilson lines corresponding to massless particles (Almelid, Duhr, Gardi).

- Most complicated diagram took several years to complete.
- Final result has a very simple form, if expressed in the right way!
- The m-loop massless soft anomalous dimension for n particles can be written (Becher, Neubert; Gardi, Magnea)

$$
\Gamma_{S}=\Gamma_{S}^{\text {dip. }}+\Delta_{n}^{(m)},
$$

where the first term depends only on pairs of particles.

- The correction term starts at three-loop order.

The correction function $\Delta_{n}^{(m)}$

- If β_{i} be the 4 -velocity of the $i^{\text {th }}$ Wilson line, and \mathbf{T}_{i} a colour generator on line i, then

$$
\begin{aligned}
\Delta_{n}^{(3)}\left(\left\{\rho_{i j k l}\right\},\left\{\mathbf{T}_{i}\right\}\right) & =16 f_{a b e} f_{c d e}\left\{-C \sum_{i=1}^{n} \sum_{\substack{\leq j<k \leq n \\
j, k \neq i}}\left\{\mathbf{T}_{i}^{a}, \mathbf{T}_{i}^{d}\right\} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c}\right. \\
+\sum_{1 \leq i<j<k<l \leq n} & {\left[\mathbf{T}_{i}^{a} \mathbf{T}_{j}^{b} \mathbf{T}_{k}^{c} \mathbf{T}_{l}^{d} \mathcal{F}\left(\rho_{i k j l}, \rho_{i j k}\right)+\mathbf{T}_{i}^{a} \mathbf{T}_{k}^{b} \mathbf{T}_{j}^{c} \mathbf{T}_{l}^{d} \mathcal{F}\left(\rho_{i j k l}, \rho_{i l k j}\right)\right.} \\
& \left.\left.+\mathbf{T}_{i}^{a} \mathbf{T}_{l}^{b} \mathbf{T}_{j}^{c} \mathbf{T}_{k}^{d} \mathcal{F}\left(\rho_{i j l k}, \rho_{i k j}\right)\right]\right\},
\end{aligned}
$$

where $C=\zeta_{5}+2 \zeta_{2} \zeta_{3}$, and \mathcal{F} is a function of conformally invariant cross-ratios

$$
\rho_{i j k l}=\frac{\left(\beta_{i} \cdot \beta_{j}\right)\left(\beta_{k} \cdot \beta_{l}\right)}{\left(\beta_{i} \cdot \beta_{k}\right)\left(\beta_{j} \cdot \beta_{l}\right)} .
$$

The function \mathcal{F}

- The non-trivial kinematic dependence is simplified by introducing the (in general complex) variables

$$
z_{i j k l} \bar{z}_{i j k l}=\rho_{i j k l}, \quad\left(1-z_{i j k l}\right)\left(1-\bar{z}_{i j k l}\right)=\rho_{i l k j} .
$$

- Then one has

$$
\mathcal{F}\left(\rho_{i j k l}, \rho_{i l k j}\right)=F\left(1-z_{i j k l}\right)-F\left(z_{i j k l}\right),
$$

where

$$
F(z)=\mathcal{L}_{10101}(z)+2 \zeta_{2}\left[\mathcal{L}_{001}(z)+\mathcal{L}_{100}(z)\right]
$$

and $\mathcal{L}_{w}(z)$ is a single-valued harmonic polylogarithm (SVHPL), introduced by Brown.

The bootstrap approach

- The simplicity of the three-loop soft anomalous dimension suggests an alternative way to calculate it (Almelid, Duhr, Gardi, McLeod, White).
- By mapping Wilson lines to the Riemann sphere, one can show that the correction function $\Delta_{n}^{(3)}$ can only depend on SVHPLs.
- One can then write a general ansatz for C and $F(z)$, and constrain the coefficients using:

1. Bose symmetry.
2. Colour conservation.
3. Uniform transcendental weight.
4. Collinear limits (Dixon, Gardi, Magnea; Almelid, Duhr, Gardi).
5. Regge limits (Caron-Huot, Gardi, Vernazza).

- $\Delta_{n}^{(3)}$ is then fixed up to an overall constant!
- This is called a bootstrap approach. Previously used in $\mathcal{N}=4$ SYM theory, but works for QCD too!

Conclusion

- Infrared singularities are important for both hep-ph and hep-th reasons.
- Much recent progress in calculating the soft anomalous dimension that controls them.
- Webs provide a highly efficient language for higher order calculations in QCD and related theories.
- New powerful techniques (e.g. bootstrap approach) greatly simplify calculations at three loops and beyond!

Open Problems

- What is the general structure of web mixing matrices?
- Are their combinatoric properties useful for something else?
- Can we calculate all 3-loop Wilson line diagrams for massive particles?
- Can we use the bootstrap at four loops and beyond?
- Can we use these results to extend resummation?
- Can we use webs beyond the soft approximation?
- Are webs useful for TMDs, GPDs, or other LC2017-friendly subjects?

