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General goals

Bethe-Salpeter equation to study non-perturbative systems;
Fully covariant relativistic description in Minkowski space;
Understand step-by-step the degrees of freedom within the used
tools;
Make feasible the numerics - probably the biggest challenge!
Is the valence enough and how higher Fock contributions
appears?;
How bad is to ignore the crosses in the BSE kernel?
Introducing color factors and the large Nc limit;
Phenomenological approaches based on BSE and LFD;
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Bethe-Salpeter equation

The BSE for the bound state with total four momentum p2 = M2,
composed of two scalar particles of mass m reads

Φ(k, p) = S(p/2 + k)S(p/2− k)
∫ d4k′

(2π)4 iK(k, k′, p)Φ(k′, p),

S(k) =
i

k2 −m2 + iε
: Feynman propagator

Φ = ΦK
The kernel K is given as a sum of irreducible Feynman diagrams
(ladder, cross-ladder, etc).

E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951)

N. Nakanishi, Graph Theory and Feynman Integrals (Gordon and Breach, New York, 1971)

J. Nogueira (ITA, Brazil / ’La Sapienza’, Italy) Few-body with BSE 4 / 25



Nakanishi integral representation

General representation for N-leg transition amplitudes;
2-point correlation function: Kallen-Lehmann spectral
representation
For the vertex function (Bound state) - 3-leg amplitude:

Φ(k, p) =
∫ 1

−1
dz′
∫ ∞

0

g(γ′, z′)
(γ′ + κ2 − k2 − (p · k)z′ − iε)3 , κ2 = m2 −M2/4

All dependence upon external momenta in the denominator;
Allows to recognize the singular structure and deal with it
analitically;
Weight function g(γ′, z′) is the unknown quantity to be
determined numerically

T. Frederico, G. Salme and M. Viviani, Phys. Rev. D 85, 036009 (2012)
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Light-front projection

Much easier to treat Minkowski space poles properly;
Simpler dynamics of the propagators/amplitudes within LF (See
talk by Prof. Ji)
Easy connection with LFWF:

Introduce the LF variables k± = k0 ± kz
Valence LFWV from the BS amplitude:

ψn=2/p(ξ, k⊥) =
p+√

2
ξ (1− ξ)

∫ ∞

−∞

dk−

2π
Φ(k, p),

Corresponding to eliminate the relative LF time t + z = 0;

Essential in this approach to solve BSE directly in Minkowski
space;
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Relations: LF, NIR and BS amplitude

The Nakanishi integral representation (NIR) gives the
Bethe-Salpeter amplitude χ (BSA) through the weight function g;
The Light-Front projection of the BSA gives the valence light-front
wave function (LFWF) Ψ2;
The inverse Stieltjes transform gives g from the valence LFWF
(talk by Prof. Karmanov);

Valerio Gherardi, Master Thesis (2017)
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Three-body within LF framework

The Faddeev component of the three-body vertex function reads:

Γ(k⊥, x) = F(M12)
1

(2π)3

∫ 1−x

0

dx′

x′(1− x− x′)

∫ ∞

0

d2k′⊥
M2

0 −M2
3

Γ
(
k′⊥, x′

)
,

(1)

F(M12) is the two-body zero-range scattering amplitude;

M2
12 = (1− x)M2

3 −
k2
⊥+(1−x)m2

x is two-body effective mass;
M2

0 is the invariant mass squared of the intermediate three-body
state:

M2
0 =

~k′
2
⊥ + m2

x′
+
~k2
⊥ + m2

x
+

(~k′⊥ +~k⊥)2 + m2

1− x− x′
. (2)

Is that enough or we need higher Fock contributions?

T. Frederico, Phys. Lett. B 282 (1992) 409; J. Carbonell, V.A. Karmanov, Phys. Rev. C 67 (2003) 037001.
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Three-body within covariant BS equation

The vertex function for the three-body BS equation reads

v(q, p) = 2iF(M12)
∫ d4k

(2π)4
i

[k2 −m2 + iε]
i

[(p− q− k)2 −m2 + iε]
v(k, p)

M2
12 = (p− q)2.

Figure: The three-body LF graphs obtained by time-ordering of the Feynman graph.

Figure: Examples of many-body intermediate state contributions to the LF three-body forces.
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Results: Binding energies

Solving the BSE by means of the Wick-rotation and comparing the
solution with the LFD:
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Figure: The binding energy B3 for the first excited state vs. the two-body binding energy B2 . The solid curve is

computed solving the Euclidean BS equation. The dashed curve is computed solving the LF equation.

Additional contributions→ like effective three-body force of
relativistic origin.
Comparison between BS and LFD through transverse amplitudes
(talk by Prof. Frederico):

J. Nogueira (ITA, Brazil / ’La Sapienza’, Italy) Few-body with BSE 10 / 25



Transverse amplitudes
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Significant impact from the extra contributions also shown on the
structure;
Minkowski calculation

By direct integration of the poles: Very hard numerically;
NIR + LF projection seems to be essential!
Other methods in literature were too complicated to go further;

K. Kusaka, K. Simpson, and A. G. Williams, Phys. Rev. D 56, 5071 (1997).

E. Ydrefors, JHAN, V. Gigante, V. Karmanov and T. Frederico Phys. Lett. B 770 (2017) 131-137
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Phenomenological application of LF framework

B+ → K−π+π+ decay amplitude + three-body final state
interactions
The full decay amplitude considering interactions between all the
final states mesons reduces to

A0(ki, kj) = B0(ki, kj) + ∑
α

τ(sα)ξ
α(kα) , (3)

where the subindex in A0 denotes the s-wave two-meson
scattering and the bachelor amplitude ξ(ki) carries the three-body
rescattering effect and is represented by the connected
Faddeev-like equations

ξ i(ki) = ξ i
0(ki) +

∫ d4qj

(2π)4 Sj(qj)Sk(K− ki − qk)τj(sj)ξ
j(qj)

+
∫ d4qk

(2π)4 Sj(K− ki − qk)Sk(qk)τk(sk)ξ
k(qk). (4)

with qk = K− ki − qj.
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Perturbative solution for the Faddeev component
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Figure: Modulus and phase of ξ3/2
3/2,1/2 for ε = 0.5 GeV2, µ2 = 0.4 GeV2 (left) and

µ2 = −0.1 GeV2 (right).

That is probably not enough without higher Fock contributions;

J.H.A.N., T. Frederico and O. Lourenço, Few Body Syst. 58 (2017) no.2, 98

J. Nogueira (ITA, Brazil / ’La Sapienza’, Italy) Few-body with BSE 13 / 25



BSE in Minkowski space

Nakanishi integral representation:

Φ(k, p) =
∫ 1

−1
dz′
∫ ∞

0

g(γ′, z′)
(γ′ + κ2 − k2 − (p · k)z′ − iε)3 , κ2 = m2 −M2/4

Light-Front projection:
Introduce the LF variables k± = k0 ± kz
Relative LF time t + z = 0
Applying the NIR on both sides of the BSE and integration over k−
leads to the integral equation∫ ∞

0

g(γ′, z)dγ′

[γ + γ′ + z2m2 + (1− z2)κ2]2
=∫ ∞

0
dγ′

∫ 1

−1
dz′V(γ, z, γ′, z′)g(γ′, z′)

where V is expressed in terms of the BS kernel K

V. A. Karmanov and J. Carbonell, Eur. Phys. J. A 27, 1 (2006)
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Coupling constants

Solving the generalized eigenvalue problem for both L and L+CL
kernels:
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Figure: Coupling constant for various values of the binding energy B obtained by using the
Bethe-Salpeter ladder (L) and ladder plus cross-ladder (CL) kernels, for an exchanged mass of
µ = 0.5m.

Effect of only one cross-graph is huge!
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Coupling constants and LF wave functions

B/m µ/m α(L+CL) α(L) α(L)/α(L+CL) Ψ(L)
LF /Ψ(L+CL)

LF

1.5 0.15 4.1399 6.2812 1.5172 1.5774
0.50 5.1568 7.7294 1.4988 1.5395

1.0 0.15 3.5515 5.3136 1.4961 1.5508
0.50 4.5453 6.7116 1.4766 1.5094

0.5 0.15 2.5010 3.6106 1.4436 1.4805
0.50 3.4436 4.9007 1.4231 1.4405

0.1 0.15 1.1052 1.4365 1.2997 1.2763
0.50 1.9280 2.4980 1.2956 1.2694

The ratios α(L)/α(L+CL) and Ψ(L)
LF /Ψ(L+CL)

LF are almost the same for
given B and µ.
Information about the asymptotic behavior of ΨLF for the
complete kernel can be deduced from the coupling constant
(which can be obtained in Euclidean space).

V. Gigante, JHAN, E. Ydrefors, C. Gutierrez, V. Karmanov, T. Frederico, Phys. Rev. D 95, (2017) 056012
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Full set of crossed graphs
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Figure: Coupling constant versus B fot the BSE with ladder (L) and ladder plus cross-ladder
(CL) kernels, for an exchanged mass of µ = 0.15m. Calculation within Feynman-Schwinger
representation considering all crossed-ladder graphs is also presented.

We can use information from the coupling to predict the tail of the
LFWV.

T. Nieuwenhuis and J. A. Tjon, Phys. Rev. Lett. 77 (1996) 814
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Elastic electromagnetic form factor

p1 p2

kp p′

q

p1
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p9p2 p8
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p6

p p′

q

Electromagnetic current for spinless system

Jµ = (pµ + p′µ)F1(Q2) + (pµ − p′µ)F2(Q2), F2 = 0 (elastic case)

Impulse-approximation contribution (one-body type)

FI(Q2) =
1

27π3

∫ ∞

0
dγ
∫ 1

−1
dzg(γ, z)

∫ ∞

0
dγ′

∫ 1

−1
dz′g(γ′, z′)

×
∫ 1

0
dyy2(1− y)2 fnum

f 4
den
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Two-body current contribution

FX(Q2) = −3α2m4

(2π)5

∫ ∞

0
dγ
∫ 1

−1
dz
∫ ∞

0
dγ′

∫ 1

−1
dz′

6

∏
i=1

∫ 1

0
dyi

Θ
(
1− ∑

j=i+1;i<4
yj
)
(1− y5)

2y2
5(1− y6)

2y3
6

f X
num

[f X
den]

5
g(γ, z)g(γ′, z′)
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The two-body current diagram has a significant contribution for
large B.
The impulse-approximation contribution dominates for large
values of Q2. Asymptotics: FI(Q2) ∼ Q−4, FX(Q2) ∼ Q−6
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Large-Nc limit

’t Hooft - A planar diagram theory for strong interactions;
In the Nc → ∞ limit non-planar graphs are suppressed in QCD1+1;

Light-cone-quantized QCD1+1
QCD light-cone Hamiltonian diagonalized;
Numerical test of approximation for large-Nc expansion;
Able to produce hadron spectrum, wave functions, ...

We can introduce the color degree of freedom in our BS kernel;
Numerical test in a simple 3+1 dynamical model of the large-Nc
approximation;

How big Nc is needed to suppress the huge effect from the
crossed-kernel?

G.’t Hooft, Nucl. Phys. B 75 (1974) 461

K. Hornbostel, S. J. Brodsky and H.-C. Pauli, Phys. Rev. D 41 (1990) 3814.
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Coupling constants with color factor
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Figure: Coupling constant for various values of the binding energy B obtained by using the
Bethe-Salpeter ladder (L) and ladder plus cross-ladder (CL) kernels, for an exchanged mass of
µ = 0.5m. In the upper panels are shown the results computed with no color factors. Similarly, in
the lower panels are compared the results for N = 2, 3 and 4 colors.

Suppression is already pretty good for Nc = 3 - that may support
ladder truncations...at least within this system.

JHAN, C.-R. Ji, E. Ydrefors and T. Frederico, in preparation
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Suppression in the LFWF

Checking also the suppression in the structure:
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Figure: (left) Valence LFWF as a function of γ = k2
⊥ computed with the BSA for L and L+CL.

Results for N = 3 colors are compared with the ones where no color factors are included. Used
values of the input parameters: B = 1.0m, µ = 0.5m and z = 0.0. (right) Ratio between the
valence wave functions calculated with the L and L+CL.
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Outlook

BSE in Minkowski space :Quark-diquark model for the nucleon;
Suppression of non-planar diagrams in other systems;

Unequal mass case and BSE one-body limit;
Solve Schwinger-Dyson equation in 3+1 directly in Minkowski
space by means of spectral representations (project with Prof.
Peter Maris);

Avoid Euclidean models (spacelike region) for the dressed-gluon
propagator and quark-gluon vertex;

Phenomenological applications using presented ideas to take into
account higher-Fock contributions;
Fermion-fermion system within BSE in Minkowski space was
solved (talk by Prof. Frederico)

Spectrum, momentum distributions, form factors of hadrons and so
on in this approach
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Conclusions

Three-body system with zero-range interaction:
Solved in both Euclidean BSE and LFD approaches;
Higher-Fock components leads to a much stronger binding
compared to the LF truncated equation;
Higher-Fock components - effective three-body forces;
Minkowski space calculation through direct integration of the poles
+ numerical treatment is very tough;

NIR and the LF projection→ Very helpful to study the BSE in
Minkowski;

Many systems already treated and many issues already solved;
Easy connection with LF dynamics;
No truncation on the Fock expansion;
Crossed graphs have huge effects;

Color degree of freedom shows to suppress non-planar diagrams
very well already for Nc = 3;

This may be a way to support ladder truncations;
It is almost impossible to consider more than one cross-ladder in
pratical calculations;
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Thank you!
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