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Abstract
In this work we present some new results obtained in a study of the phase dia-

gram of charged compact boson stars in a theory involving a complex scalar field
with a conical potential coupled to a U(1) gauge field and gravity. We here ob-
tain new bifurcation points in this model. We present a detailed discussion of the
various regions of the phase diagram with respect to the bifurcation points. The
theory is seen to contain rich physics in a particular domain of the phase diagram.

Introduction
• In this work we study the phase diagram of charged compact boson stars

in a theory involving a complex scalar field with a conical potential cou-
pled to a U(1) gauge field and gravity [1, 2].

• A study of the phase diagram of the theory yields new bifurcation points
(in addition to the first one obtained earlier, cf. Refs. [1, 2]), which implies
rich physics in the phase diagram of the theory.

• Our present studies extend the work of Refs. [1, 2]), performed in a theory
of complex scalar field with only a conical potential, i.e., the scalar field
is considered to be massless.

• We construct the boson star solutions of this theory numerically.

Action and Equations of Motion
We consider the theory defined by the following action (with V (|Φ|) :=
λ|Φ|, where λ is a constant parameter):

S =

∫ [
R

16πG
+ LM

]√
−g d4 x ,

LM = −1

4
F µνFµν − (DµΦ)

∗ (DµΦ)− V (|Φ|) ,
DµΦ = (∂µΦ + ieAµΦ) , Fµν = (∂µAν − ∂νAµ). (1)

Here
•R is the Ricci curvature scalar,
•G is Newton’s gravitational constant.
• g = det(gµν), where gµν is the metric tensor,
• asterisk denotes complex conjugation.

Using the variational principle, the equations of motion are obtained as:

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν ,

∂µ
(√

−gF µν
)
= −ie

√
−g[Φ∗(DνΦ)− Φ(DνΦ)∗] ,

Dµ

(√
−gDµΦ

)
=

λ

2

√
−g

Φ

|Φ|
,[

Dµ

(√
−gDµΦ

)]∗
=

λ

2

√
−g

Φ∗

|Φ|
. (2)

The energy-momentum tensor Tµν is given by

Tµν =

[
(FµαFνβ g

αβ − 1

4
gµνFαβF

αβ) + (DµΦ)
∗(DνΦ) + (DµΦ)(DνΦ)

∗

−gµν ((DαΦ)
∗(DβΦ)) g

αβ − gµνλ(|Φ|)
]
. (3)

To construct spherically symmetric solutions we adopt the metric

ds2 =

[
−A2Ndt2 +N−1dr2 + r2(dθ2 + sin2 θdϕ2)

]
. (4)

This leads to the components of Einstein tensor (Gµν)

Gt
t =

[
− [r (1−N)]′

r2

]
, Gr

r =

[
2rA′N − A [r (1−N)]′

A r2

]
,

Gθ
θ =

[
2r [rA′ N ]′ +

[
A r2N ′]′

2A r2

]
= Gφ

φ. (5)

Here the arguments of the functions A(r) and N(r) have been suppressed.
For solutions with a vanishing magnetic field, the Ansätze for the matter
fields have the form:

Φ(xµ) = ϕ(r)eiωt , Aµ(x
µ)dxµ = At(r)dt. (6)

We introduce new constant parameters:

β =
λ e√
2

, α2(:= a) =
4πGβ2/3

e2
. (7)

Here a := α2 is dimensionless. We then redefine ϕ(r) and At(r):

h(r) =
(
√
2 e ϕ(r))

β1/3
, b(r) =

(ω + eAt(r))

β1/3
. (8)

Introducing a dimensionless coordinate r̂ defined by r̂ := β1/3 r (implying
d
dr = β1/3 d

dr̂), Eq. (8) reads:

h(r̂) =
(
√
2 e ϕ(r̂))

β1/3
, b(r̂) =

(ω + eAt(r̂))

β1/3
. (9)

The equations of motion in terms of h(r̂) and b(r̂) (where the primes de-
note differentiation with respect to r̂, and sign(h) denotes the usual signature
function) read:[

ANr̂2h′]′ = r̂2

AN

(
A2Nsign(h)− b2h

)
,

[
r̂2b′

A

]′
=

bh2r̂2

AN
. (10)

We thus obtain the set of equations:

N ′ =

[
1−N

r̂
− α2r̂

A2N

(
A2N 2h′2 +Nb′2 + 2A2Nh + b2h2

) ]
, (11)

A′ =

[
α2r̂

AN 2

(
A2N 2h′2 + b2h2

) ]
, (12)

h′′ =

[
α2

A2N
r̂h′ (2A2h + b′2

)
− h′ (N + 1)

r̂N
+
A2Nsign(h)− b2h

A2N 2

]
,(13)

b′′ =

[
α2

A2N 2
r̂b′

(
A2N 2h′2 + b2h2

)
− 2b′

r̂
+
bh2

N

]
. (14)

Boundary Conditions
For the metric function A(r̂) we choose the boundary condition A(r̂o) = 1,
where r̂o is the outer radius of the star. For constructing globally regular
ball-like boson star solutions, we choose:

N(0) = 1 , b′(0) = 0 , h′(0) = 0 , h(r̂o) = 0 , h′(r̂o) = 0. (15)

In the exterior region r̂ > r̂o we match the Reissner-Nordström solution.

Charge and Mass
The theory has a conserved Noether current:

jµ = −i e [Φ(DµΦ)∗ − Φ∗(DµΦ)] , jµ;µ = 0 . (16)

The charge Q of the boson star is given by

Q = − 1

4π

∫ r̂o

0

jt
√
−g dr dθ dϕ , jt = − h2(r̂)b(r̂)

A2(r̂)N(r̂)
. (17)

For all boson star solutions we obtain the mass M (in the units employed):

M =

(
1−N(r̂o) +

α2Q2

r̂2o

)
r̂o
2
. (18)

Results and Discussion
• We study the numerical solutions of Eqs. (11)-(14) with the boundary

conditions defined by A(r̂o) = 1 and Eq. (15)
• We determine their domain of existence for a sequence of specific values

of the parameter a.
• The theory is seen to possess rich physics in the domain a = 0.22 to
a ≃ +0.16 .

• We observe very interesting phenomena (in the phase diagram) near spe-
cific values of a, where the system is seen to have bifurcation points
B1 , B2 and B3 corresponding to the following values of a: ac1 ≃
0.198926, ac2 ≃ 0.169311 and ac3 ≃ 0.168308, respectively.

• Possibility of further bifurcation points is not ruled out.
• In this work our focus is on the bifurcations.
• The phase diagram is divided into different regions in the vicinity of bi-

furcation points (as explained in the caption of Fig. 1).
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Figure 1: Fig. (a) depicts the phase diagram of the theory in terms of the
vector field at the center of the star b(0) and the scalar field at the center of
the star h(0) for different values of the parameter a in the range a = 0 to
a = 0.225. The points B1, B2 and B3 represent three bifurcation points.
The entire region depicted in the phase diagram in Fig. (a) is divided into
four regions IA, IB and IIA, IIB in the vicinity of B1. The region IB of the
phase diagram shown in Fig. (a) is separately depicted in detail in Fig. (c).
The region IB of the phase diagram is subdivided into three regions IB1,
IB2 and IB3 in the vicinity of B2. The region IB3 of the phase diagram
shown in Fig. (b) is separately depicted in detail in Fig. (e). It is subdi-
vided into three regions IB3a, IB3b and IB3c in the vicinity of B3. Figs.
(b), (d) and (f) shows the radius r̂o of the boson star versus the vector field
at the center of the star b(0) for different values of a. The spiral behaviour
of the solutions is visible in the regions IA and IIB. The asterisks shown
in Fig. (a), corresponding to h(0) = 0, represent the transition points from
the boson stars to boson shells. The insets in Figs. (b) and (c) represent
parts of these phase diagrams with higher resolution.

• To understand the stability of the boson stars, we consider the mass M
versus the charge Q, as shown in Fig. 3(a) and 3(c) or the mass per unit
charge M/Q versus the charge, as shown in Figs. 3(b) and 3(d).

• For the value ac1 the two branches of solutions, limiting the region IA,
possess lower masses than the the two branches of solutions, limiting the
region IB, and should therefore be more stable.

• The two branches of solutions, limiting the region IB, might be classically
stable as well, until the first extrema of mass and charge are encountered.

• Quantum mechanically, however, they would be unstable, since tunneling
might occur. Beyond these extrema, unstable modes should be present,
and thus the solutions should also be classically unstable.

• The curves shown in region IIB represent the lowest mass solutions for a
given charge, they should be stable as well.

• In the region IIA, however, the solutions exhibiting oscillating/spiral be-
havior translates into the presence of a sequence of spikes, as seen in the
insets of Figs. 3(a) and 3(b). Here the solutions should be stable only on
their fundamental branch, reaching up to a maximal value of the mass and
the charge, where a first spike is encountered. With every following spike
a new unstable mode is expected to arise, as we conclude by analogy with
the properties of non-compact boson stars.
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Figure 2: Fig. (a) depicts the mass M versus the radius of the star r̂o for
the same sequence of values of the parameter a. As before, the asterisks
represent the transition points from the boson stars to boson shells, and
the insets magnify parts of the diagram. Fig. (b) zooms into the region of
the bifurcations, with the inset giving a magnified view of the bifurcation
B3. Fig. (c) and (d) are the analog of Fig. (a) and (b) respectively for the
charge Q.
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Figure 3: Fig. (a) depicts the mass M versus the charge Q for the same
set of solutions. As before, the asterisks represent the transition points
from the boson stars to boson shells, and the inset magnifies a part of the
diagram. Fig. (b) depicts the mass per unit charge M/Q versus the charge
Q. Again the insets magnify parts of the diagram. Fig. (c) and (d) zooms
further into the region of the bifurcations.

Conclusion
• We have studied in this work a theory of a complex scalar field with a

conical potential, coupled to a U(1) gauge field and gravity.
• We have shown that the theory has rich physics in the domain a = 0.22 to
a ≃ 0.16, where we have identified three bifurcation points B1, B2 and
B3of possibly a whole sequence of further bifurcations.

• We have investigated the physical properties of the solutions, including
their mass, charge and radius.

• By considering the mass versus the charge (or the mass per unit charge
versus the charge) we have given arguments concerning the stability of
the solutions.
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