LWFA of externally injected electron bunches in guiding structures

N.E. Andreev

Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia Moscow Institute of Physics and Technology, Russia

In collaboration with

CNRS - University Paris XI, France
European Plasma Research Accelerator with eXcellence In
Applications

The 1st EuPRAXIA Collaboration Week

June 19th - 23th, 2017 at DESY, Hamburg, Germany

Low energy electron bunch injection at the maximum of the WF potential *to minimize the energy spread*

Computer simulation by the code LAPLAC

Initial energy of electrons $E_{inj} = 1.9 \ mc^2$ and normalized emittance $\sigma_N = 0.346 \ mm \times mrad$

The radial bunch dispersion was $\sigma_{r,inj}=1.88~\mu m$ ($k_p\sigma_{r,inj}=0.148, k_pR_{rms}=0.214$) Longitudinal dispersion $\sigma_{z,inj}=2.3~\mu m$ (FWHM bunch duration = 23 fs, $k_p\sigma_{z,inj}=0.18$)

$$\varphi(\xi_{inj}) - \varphi(\xi_{tr}) = E_{inj}/mc^2 - \left[\left(1 - \gamma_{ph}^{-2} \right) \left(E_{inj}^2 / m^2 c^4 - 1 \right) \right]^{1/2} - 1/\gamma_{ph}$$

At the entrance of the matched plasma channel, the laser pulse envelope was Gaussian in both longitudinal and transverse directions with laser wavelength $\lambda_0 = 0.8 \, \mu m$, amplitude $a_0 = 0.964$ and FWHM pulse duration $\tau_{FWHM} = 50 \, \text{fs}$, and waist radius $r_0 = 68.2 \, \mu m$

 P_L =145 TW, P_L/P_{cr} =0.854, at plasma density on the axis n_0 = 1.75 × 10¹⁷ cm⁻³, γ_{ph} = 100.

From 1-D theory in the stationer wakefield for test particles

The compressed length of the trapped bunch can be estimated through the wakefield potential at the phases of injection and trapping:

$$L_b = \frac{1}{2} k_p L_{b0}^2 \frac{\left|\partial^2 \phi(\xi_m)/\partial \xi^2\right|}{\partial \phi(\xi_{tr})/\partial \xi} \quad \text{Injected RMS bunch length $k_p L_{b0}$=0.41} \\ k_p L_{rms} = 0.07 \text{ obtained in the simulations}$$

The upper estimate for the minimal electron energy spread:

$$\Delta E_f = 2\sigma_E \approx 4|e|k_p \frac{d\phi}{d\xi_f} \frac{E_{\rm inj}^2}{m^2 c^4} \sigma_{z,\rm inj}. \qquad 2\Delta E_{rms} / \approx 0.002$$

the maximum energy of the bunch electrons at the "focusing" point is limited to a value

$$E_f \approx 2\gamma_{\rm ph} mc^2 (1 - 2\gamma_{\rm ph} |e| \phi(\xi_{\rm df})/mc^2)$$

Beam loading effect (self-action of the bunch charge) in the LWFA

Conclusion on the electron acceleration in guiding structures

- Stable and controllable laser propagation and wakefield generation over tens of Rayleigh length in guiding structures are demonstrated
- Acceleration of electrons to GeV energies in cm-scale capillaries is achieved
- Loading effect can be controlled and used to optimize electron bunch parameters for a low energy spread (but it limits the bunch charge!)
- LWFA can provide acceleration of polarized electron bunches to high energies
- •Complete analysis and experiments on multistage acceleration that preserve high-quality electron bunches are needed to demonstrate the key element of the collider concept

