EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

RF Injector

E. Chiadroni / INFN-LNF - 1st Collaboration Week

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

Injector Definition

- An electron injector is the first part of the accelerating chain
 - The electron beam generated at rest energy is accelerated and guided up to energies where space charge force effects are negligible and under control
 - beam evolution is not space charge dominated anymore
- Space charge forces scale inversely with the square of the beam energy
- Space charge forces influence the beam dynamics and are one the main performance limitations in high brightness electron injectors

- External injection schemes
 - Laser driven (500 MeV)
 - witness generation
 - Particle driven (450 500 MeV)
 - both driver and witness generation

Two options can be studied

One **advantage** of PWFA with respect to LWFA is the availability of **high average power beams**, ~100 W

- superconducting linac (FLASH-like to take profit of the high rep rate)
 - WP9 (DESY people take care of simulations), WP5 can coordinate the work
- high gradient normal conducting linac (e.g. X-band to take advantage of compactness)
 - WP9 (INFN people take care of simulations), WP5 coordinates the work

- The RF injector is composed of
 - S-band photo-injector to generate multi-kA beam current (TSTEP)
 - X-band linac to boost the beam up to ~500 MeV (*Mad8 and Elegant*)
 - Focusing region to match the beam transversally at the plasma entrance (*Elegant,TSTEP*)

Beam dynamics simulations have been performed by means of **TSTEP** to take into account space charge degradation effects **in the photo-injector** and of **Elegant** code for the **high-energy linac**.

The beam dynamics in the **final focusing** system has been simulated with **both Elegant and TSTEP** to include the space charge degradation effects due to high density phase space in the strong focusing region.

Preliminary Layout

Beam Parameters

Full VB and

X-band

linac

~3 at the final focus

0.1

~60

0.518

0.25

200

~20 (67)

~4

	Units	EuPRAXIA FEL-CDR 1 GeV	
		Witness bunch	
No.bunches		1	
Bunch separation	ps		
Rep. rate	Hz	10	
Injector energy	GeV	0.15	
Xband Acc. Gradient	MV/m	> 70	
Exit linac energy	GeV	0.5	
Rms Energy Spread	%	<1	<1
FWHM Peak current	kA	3	1.5
Bunch charge	pC	30	10
Bunch length-rms FWHM	μm (fs)	3 (10)	2 (7)
Rms norm. emittance	μm	<1.5	<1
Slice Length	μm	0.75	0.75
Slice Charge	pC	7.5	3.7
Slice Energy Spread	%	0.1	0.1
Slice norm. emittance	μm	1	0.5
Undulator period	cm	1.5	1.5
K		1	1
ρ	x 10 ⁻³	1.1	1.1
Radiation wavelength	nm (KeV)	3. (0.4)	3. (0.4)
Saturation length	m	26	27
Saturation power	MW	1210	492
Energy	μJ	12	3.3
Photons/pulse	x 10 ¹⁰	17.	4.8

Full VB and X-band linac
~0.1 ~60 0.518
0.06 ~3 at the final focus 30
~3 (10) ~0.46

The slice	length	is
0.75 um		

~4 slices with ~3 kA => more than half of the charge contributes to lasing These parameters have been obtained as there were two injectors!!

PWFA 2 FEL-SASE 1 GeV

1 Drive bunch

1. 10

0.15

> 70

0.5

<1

1.8

200

34 (112)

<2

EUPRAXIA Witness beam for LWFA

by Anna Giribono (INFN-RM1) and C. Vaccarezza (INFN-LNF)

 Working point for the witness at the plasma entrance for both external injection schemes

Witness beam for LWFA

by Anna Giribono (INFN-RM1)

EUPRAXIA Comb-like beam for PWFA

by Anna Giribono (INFN-RM1)

Two bunches generated at the cathode, separated by 4 ps

In FELs, the resonance condition

$$\lambda_r = \frac{\lambda_u}{2\gamma^2} (1 + K_{rms}^2)$$

implies that the radiation slips forward, with respect to electrons, of λ_r each undulator period λ_u

• the amplification happens at the scale of the slippage length:

 $L_s = N_u \lambda_r$

- the beam quality has to be certified at scale of L_s
 - Beam parameters required at a given temporal range
 - <u>Slice parameters</u>: slice emittance and slice energy spread => more relaxed request, but projected emittance plays a role in matching to the undulator!!

EUPRAXIA LWFA external injection

by Andrea R. Rossi (INFN-Mi)

E = 354 MeV

Original beam by A. Bacci

 $\sigma_{\rm tr} = 13 \,\mu{\rm m}$ $dE/E = 7.3 \ 10^{-4}$ σ_{z} = 12 fs $q = 40 \, pC$

plasma density = 10^{17} cm⁻³

EuPRAXIA@SPARC_LAB

EUPRAXIA Laminar Velocity Bunching

by Alberto Bacci (INFN-Mi)

 $\sigma_{tr} = 13 \,\mu m$ $\sigma_{z} = 12 \,fs$ E = 354 MeV dE/E = 7.3 10⁻⁴ q = 40 pC

High Gradient RF Gun

by Michele Croia (INFN-LNF)

• TO DO: Booster up to 500 MeV and final focus matching transfer line

PHYSICAL REVIEW SPECIAL TOPICS—ACCELERATORS AND BEAMS 18, 081301 (2015)

Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

F. Lemery¹ and P. Piot^{1,2}

 ¹Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA
²Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA (Received 22 May 2015; published 3 August 2015)

$$T(t)=T_0t^{\alpha}H(\tau-t),$$

- Charge density sufficiently low
 - the resulting distribution will be relativistically preserved through a drift
- larger charge densities,
 - the original longitudinal distribution will morph according to the integrated space charge forces inside the bunch
 - A large (~140 MV/m) acceleration gradient in the gun helps preserving larger charge densities compared with, e.g., L-band guns (~40 MV/m)

It is worth to investigate high gradient RF guns

Open Issues

- Superconducting linac
 - FLASH like
- Normal conducting linac
 - Compact design => x-band technology
- What beam injection energy
 - As high as needed to get out from space charge effects: ~ 500 MeV
- What beam quality
 - Consider the 6D brightness B_6

$$\sigma_{5D} \propto rac{Ne}{arepsilon_{nx}arepsilon_{ny}\sigma_{t}\sigma_{\gamma}}$$
 = 10¹⁹ Am⁻²

- N~10⁸, en ~ 0.5 mm mad, sg ~ 0.1%, st ~ 10 fs
- What peak current and which shapes
 - · We need also the possibility to generate multi-bunch at the cathode
 - the choice is driven by most demanding user applications, e.g. FELs
 - Investigation of the effect of a higher harmonic cavity to linearize the longitudinal phase space
 - Is it really needed thinking to PWFA?
- What average current
 - the choice is driven by applications?
- Different plasma sources for different acceleration schemes
 - Different matching conditions

EUPRAXIA Agenda for WP5 meetings

Wednesday, 21st of June 2017

- 14:00 -15:30 => <u>RF injector working points</u>
 - Layout introduction and Parameters table (including Twiss functions at peculiar positions) (E. Chiadroni, INFN)
 - RF compression for driver and witness up to the plasma (A. Giribono, INFN)
 - RF and magnetic compression (J. Zhu, DESY)
 - Electron diagnostics
 - Diagnostics conceptual design of EuPRAXIA-like machine (A. Cianchi, Roma2)
 - Discussion
 - Bunch shapes, synchronization, ...
- 16:00 -18:00 => <u>Diagnostics</u>: Joint meeting WP3-WP5
 - 6D characterization of witness beam before injection (B. Marchetti, DESY)
 - Beam Diagnostics for Plasma Accelerators (J. Wolfenden, CI)
 - Discussion on plasma-based devices for e-beam diagnostics
 - WP14: Challenges in diagnostics of ultrahigh 6d-brightness and laser insertion/removal (B. Hidding, U. Strathclyde)
 - Compatibility with plasma implementation
 - Plasma sources (for both LWFA and PWFA)
 - Plasma diagnostics
 - Radiation diagnostics

EUPRAXIA Agenda for WP5 meetings

Thursday, 22nd of June 2017

- 09:00 -10:30 => <u>Transfer lines</u>
 - Optimization of the capture section (K. Wang, CNRS/LAL)
 - Matching and transfer lines in plasma injector (WP3)
 - Plasma lenses as novel transfer line devices (A. Marocchino, INFN)
 - Matching conditions to the undulator (WP6)
 - Discussion on witness beam longitudinal distribution
 - Matching conditions to HEP experiments (WP7)
 - Discussion
 - Driver and laser beams after the plasma: how to remove them?

• 11:00 -12:30 => Joint meeting WP2-WP5-WP9

- Code benchmarking discussion
- Optimization of a comb-like beam down to the plasma for PWFA experiments (A. Giribono)
- Discussion on driver and witness separation
- Plasma source