EUROPEAN
PLASMA RESEARCH
ACCELERATOR WITH
EXCELLENCE IN
APPLICATIONS

6D Characterization of Witness Beam before Injection in LWFA

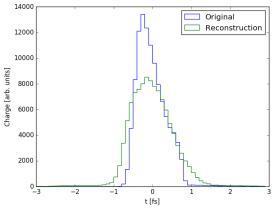
B. Marchetti

1st EuPRAXIA Collaboration Week

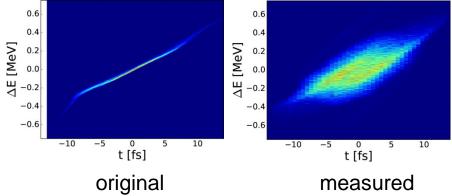
DESY, 19-23 June 2017

Characteristics of Witness Beams

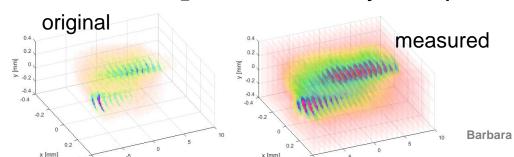
From EuPRAXIA parameter table LWFA with external injection:


Quantity	Symbol	Baseline value	Range of exploration	
			Lower limit	Upper limit
RF injector beam: at entrance of plasma 2				
Energy	E	160 MeV	100 MeV	200 MeV
Charge	Q	50 pC	10 pC	50 pC
Bunch length (RMS)	τ	38 fs	3 fs	30 fs
Peak current per bunch	I	3 kA	1 - 10 kA	
Shaped profile	-	Gaussean	triangular	
Total energy spread (RMS)	σ _E /E	0.2 %	0.2 %	
Transverse normalized emittance	$\epsilon_{N,x}$, $\epsilon_{N,y}$	1 mm mrad	1 mm mrad	
Transverse norm. slice emittance	ε _{N,x,S} , ε _{N,y,S}	tbd	tbd	
Slice length	Z _s	tbd	tbd	
Jitter, beam to global reference (RMS)	$\sigma_{\Delta t}$	10 fs	10 fs	

 At SINBAD we are investigating the range Q=0.5pC-30pC, especially the limit in the characterization of very low charge and ultra-short e-bunches.

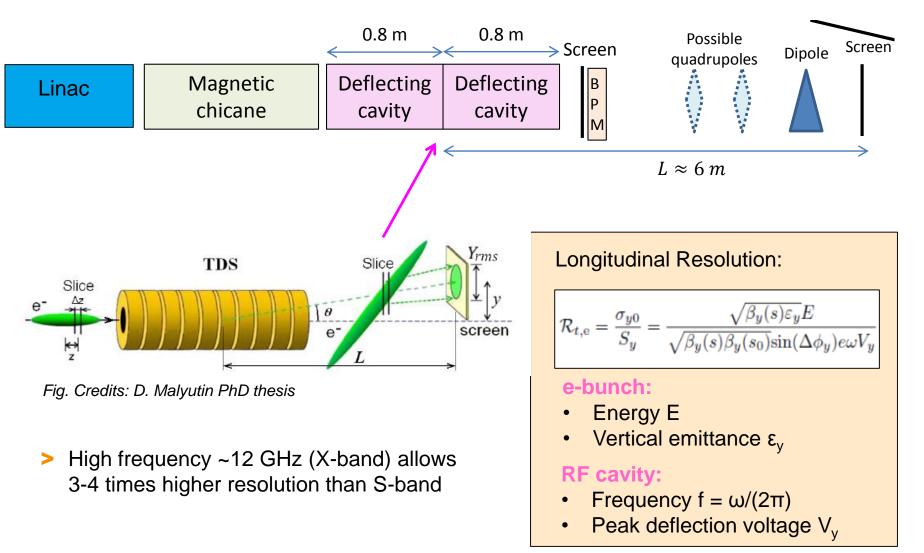


6D e-Beam Characterization includes


> Bunch Length and Longitudinal Charge Profile

> Longitudinal Phase Space

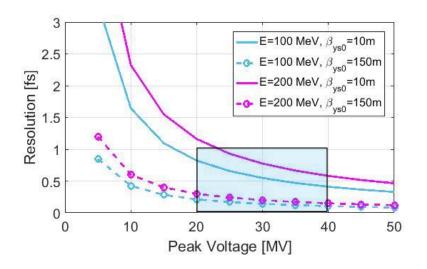
- > Slice emittance on different transverse planes
- > 3D Reconstruction of e-Bunch Charge (new technique, relies on novel design of TDS not yet experimentally tested)



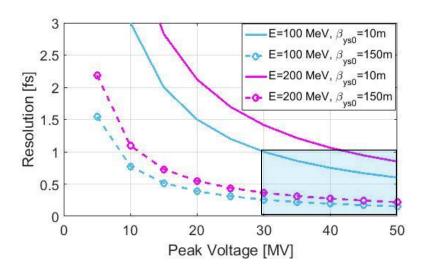
Simulations by D. Marx, More details in joint WP3-WP5 Meeting Wednesday 16.00-18.00

Barbara Marchetti | Eupraxia workshop | June 2017 | Page

General idea of Lattice Design



Resolution Range EuPRAXIA case


$\varepsilon_n = 0.3 \text{mm*mrad}$

 $\Delta \phi = \pi/2$ f=12GHz

ε_n =1mm*mrad

 $\Delta \phi = \pi/2$ f=12GHz

- Typical β function after bunch compression <30m.
- At low energies (100 MeV) the e-beam evolves relatively quickly (the e-bunch properties change along a few m drift or matching lattice).

Technical Issues to be addressed in the WP5 discussion

Resolution & lattice design:

- At which energy is/are the diagnostics line/s?
- \triangleright High β low V option vs low β high V option
- Integration of diagnostics line with focusing to plasma

Limits high voltage TDS operation:

- RF Phase jitter
- Arrival time beam jitter
- Temperature stability of the cavity

Limits high resolution measurement at low charge

Signal to noise ratio on the measurement screen

