

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

External Injection in the Context of SINBAD

Maria Weikum

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

Glasgow

Outline

- Introduction to SINBAD
- Optimisation studies:
 - > Beamloading compensation
 - Matching into plasma
- Start-to-end simulations

SINBAD

SINBAD – Short Innovative Bunches & Accelerators at Desy

ARES linac: E-beam at plasma entrance (based on simulations by J. Zhu)

Charge	0.7 pC	RMS duration	0.77 fs
Energy	~ 100 MeV	RMS width σ_x	5.1 μm
E-spread	0.37 %	Norm emittance	0.17 μm

+ excellent arrival time stability

ANGUS laser

Power	~ 200 TW	
a_0	1.8	
Spot size w ₀	42.5 μm	
FWHM duration	25 fs	

Setup Optimisation

Laser guiding...

z[m]

0.015

0.005

Beamloading...

 $(z - \langle z \rangle) [\mu m]$

Plasma matching...

Energy gain [MeV]

EUPRAXIA Beamloading Compensation

With beamloading optimisation: 0.35% E-spread

Without beamloading optimisation: 0.32% E-spread

- Overall, very small energy spread due to ultrashort bunch length
- Traditional beamloading compensation [1] flattens energy distribution along z
- BUT: energy spread due to transverse wakefield gradient becomes dominant

Matching into Plasma

- Space-charge forces prevent focusing to matched spot size at plasma entrance →
 use of a density upramp [2]
- Significant reduction of emittance growth with increasing ramp length by factor >15
- Trade-off between acceptable emittance growth and minimal ramp length

Start-to-end Simulations: 200 MeV

2.75 cm plasma stage – no laser guiding, laser focus at 1.39 cm – no beamloading optimisation – 7.5 mm long ramps

- Almost linear energy gain between 6.9 mm & 2.13 cm → no laser guiding required
- Increase in longitudinal duration due to bunch reshaping with off-axis electrons moving backwards in beam
- Increase in energy spread in low plasma density regions due to dominant beamloading fields
- Final decrease in emittance from re-aligning of phase-space areas of centre and sides of beam [3]
 - [3] P. Tomassini et al., Plasma Phys. Controlled Fusion, 58 (034001), 2016.

Start-to-end Simulations: 1 GeV

11.5 cm plasma stage – laser guiding, laser focus at 1.01 cm – no beamloading optimisation – 1 cm long ramps

- Sudden increase in emittance and bunch length after z~10cm
- Increase in relative energy spread from z~3cm
- → Numerical dephasing between drive laser and witness beam due to laser group velocity above c for Lehe solver
 - > Alternative solvers?

Laser position z	Laser — Ebeam Offset
84.07 μm	52.85 μm
11.46 cm	76.21 μm

Focusing field at z~10cm