Effect of density gradient and laser spotsize on energy gain, energy spread, and total charge

U. Sinha^I

J. Martins¹, J. Vieira¹, D. Amorim¹ R. Fonseca², L. O. Silva¹

¹ GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon, Portugal

² Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

epp.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

Grant: PTDC-FIS-PLA-2940-2014

Electron injection using a density downramp decrease in phase velocity facilitates controlled injection

Simulation set-up

simulation tools and parameters

Effect of laser spotsize and density gradient

influence on energy gain, charge and energy spread

Conclusions and next steps

Controlled injection using density downramp

The phase velocity of the wake decreases with density triggering injection of plasma electrons

Wake phase velocity

$$v_{\phi}(z,t) = \frac{v_d}{1 - (d\omega/dz)\omega_p^{-1}(v_d t - z)}$$

For
$$r_m \gg c/\omega_p$$
 $\lambda_{wake} \approx 2r_m \approx 4\sqrt{\Lambda}c/\omega_p$

$$v_{\phi} \approx v_d \left(1 - 4\sqrt{\Lambda} \frac{d\omega_p^{-1}}{dz} \right)$$

Electron injection using a density downramp

decrease in phase velocity facilitates controlled injection

Simulation set-up simulation tools and parameters

Effect of laser spotsize and density gradient

influence on energy gain, charge and energy spread

Conclusions and next steps

OSIRIS 3.0

UCLA

tsung@physics.ucla.edu

http://plasmasim.physics.ucla.edu/

Ricardo Fonseca

Frank Tsung

osiris framework

- Massivelly Parallel, Fully Relativistic Particle-in-Cell (PIC) Code
- Visualization and Data Analysis • Infrastructure
- Developed by the osiris.consortium • ⇒ UCLA + IST

TÉCNICO LISBOA ricardo.fonseca@tecnico.ulisboa.pt http://epp.tecnico.ulisboa.pt/

code features

- Scalability to ~ 1.6 M cores
- SIMD hardware optimized
- Parallel I/O •
- Dynamic Load Balancing
- QED module •
- Particle merging •
- GPGPU support
- Xeon Phi support

Ponderomotive Guiding Center (PGC)*

Long distance LWFA (10-100 m)

Significant challenges for PIC codes

- Large disparity of spatial scales propagation distance/ laser wavelength
- Algorithm must resolve the smallest scale in the simulation
- ✦ High resolution, large iteration count

PGC approximation

- Models laser envelope propagation
- Push particles using self consistent plasma fields and ponderomotive force

PGC in OSIRIS

Features

- Speed up $\sim (\omega_0/\omega_p)^2$
- ✤ Boosted frame like computational savings
- Ultra-fast LWFA simulations
- Ionization energy depletion
- ◆ 3D, 2D slab/ 2D cylindrical

*D. Gordon, W. Mori, T. Antonsen, IEEE -TPS, 28 1135-1143 (2000) ** A. Helm, et al, 43rd EPS Conference, P1.073 (2016)

Setup for LWFA with down ramp injection using PGC algorithm with varying laser spot size

Electron injection using a density downramp

decrease in phase velocity facilitates controlled injection

Simulation set-up

simulation tools and parameters

Effect of laser spotsize and density gradient

influence on energy gain, charge and energy spread

Conclusions and next steps

e injection using density downramp for varying spotsize U LISBOA

e⁻ injection using density downramp for varying spotsize U LISBOA

Varying laser spotsize (keeping peak intensity and duration const.) affects average energy, energy spread and charge

U.Sinha | EuPRAXIA, Hamburg | June 19-23, 2017

TÉCNICO LISBOA

ſſ

Varying spotsize instead of power is more effective in reducing the energy spread

 $\Delta E/\langle E \rangle = 125.779\%$ Q_{bunch}=490.657 pC

 $W_0=5\mu m$

a₀=2.83 (Power=4.3×10¹² Watts) $W_0=5\mu m$ <E> = 121.47 MeV $\Delta E/\langle E \rangle = 22.49\%$ Q_{bunch}=43.26 pC

a₀=2.83 (Power=8.4×10¹² Watts) $W_0=7\mu m$ <E> =236.10 MeV ΔE/ <E> =9.31 % Qbunch=81.49 pC

Effect of density gradient

The plasma density is decreased linearly from n_{ph} to n_{p0} keeping the downramp length constant, i.e. L=33.5µm. n_{ph} is varied from 1e19cm⁻³ to 2e19cm⁻³ and n_{p0} from 0.5e19cm⁻³ to 1.5e19cm⁻³ keeping $\delta n = n_{ph} - n_{p0} = 0.5e19cm^{-3}$

Varying nph and np0 with dn/ndx const.

Electron injection using a density downramp

decrease in phase velocity facilitates controlled injection

Simulation set-up

simulation tools and parameters

Effect of laser spotsize and density gradient

influence on energy gain, charge and energy spread

Conclusions and next steps

Conclusions & Future Work

Simulations with varying laser spotsize suggest

At 1.4 times of the matched laser spotsize, the accelerated electrons have high energy, have high charge and a very small energy spread ~ 9%

Simulations with varying n_{ph} and n_{p0} keeping the density scale length constant

The average energy of the electrons increases till $n_{ph}=1.9$ and then decreases

The energy spread decreases with $n_{ph}=1.8$ and then increases by a small amount

Future work

Simulations with varying spot size for $n_{ph}=1.8$ and $n_{p0}=1.3$, as the energy spread is minimum at these values of density.

The effect of spotsize on energy spread needs to be theoretically investigated