Plasma density parameter scan for the laser wakefield injector using OSIRIS

Thales M. C. da Silva¹ J. Vieira¹, U. Sinha¹, A. Helm¹,

R. Fonseca², L. O. Silva¹

¹ GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon, Portugal

² Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

epp.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

Recent results

Down ramp plasma self-injection

Simulation setup

Plasma, laser, and grid parameters

Parameter scan of the plasma density

Conclusions & future work

High quality beam with down ramp plasma

Reported results of low energy spread, high brightness selfinjected beam for a density down ramp plasma scheme*.

Reported* electron beam parameters for LWFA			
Energy	56 MeV		
Energy spread	< 1%		
Transverse emittance	9 nm		
Current	8kA		

EuPRAXIA's goal for the LWFA injector

Energy	E	150 MeV	100 MeV	200 MeV
Charge	Q	100 pC	30 pC	100 pC
Bunch length	τ	5 fs	3 fs	20 fs
Peak current per bunch	1	20 kA	5 - 2	0 kA
Repetition rate	f	10 Hz	1 Hz	100 Hz
Number of bunches	Ν	1		1
Total energy spread (RMS)	σ _F /E	5 %	1%	5%
Transverse normalized emittance	ε _{Ν.x} , ε _{Ν.v}	1 mm mrad	1 mm	mrad

*X. L. Xu, et al., arXiv, 1610.00788v1 (Oct 2016)

Recent results

Down ramp plasma self-injection

Simulation setup

Plasma, laser, and grid parameters

Parameter scan of the plasma density

Conclusions & future work

OSIRIS 3.0

UCLA

Ricardo Fonseca

Frank Tsung

osiris framework

Massivelly Parallel, Fully Relativistic Particle-in-Cell (PIC) Code Visualization and Data Analysis Infrastructure Developed by the osiris.consortium \Rightarrow UCLA + IST

TÉCNICO LISBOA ricardo.fonseca@tecnico.ulisboa.pt tsung@physics.ucla.edu http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

code features

- Scalability to ~ 1.6 M cores
- SIMD hardware optimized
- Parallel I/O
- Dynamic Load **Balancing**
- **QED** module
- Particle merging
- **GPGPU** support
- Xeon Phi support

Simulation setup

IFECNICO LISBOA

<u>Plasma</u> parameters				
	Xu, et al.*	Our input		
n ₀	1 x 10 ¹⁹ cm ⁻³	1 x 10 ¹⁹ cm ⁻³		
X 1		-35µm		
X 2		-30µm		
X 3	0	0		
X 4	28µm	33.5µm		

Laser parameters				
	Xu, et al.*	Our input		
a ₀	2.83	2.83		
λ	800nm	800nm		
Т	25fs	25fs		
Shap e	Gaussian	Gaussian		
XLF	-25µm	-25µm		
Pol.	Circular	PGC		

#PPC 2 x 2 x 2

Main goal: estimate the beam parameters for different values of n₀ keeping the laser parameters the same in <u>normalized</u> units.

Recent results

Down ramp plasma self-injection

Simulation setup

Plasma, laser, and grid parameters

Parameter scan of the plasma density

Conclusions & future work

High charge and energy self-injected beam Uf TÉCNICO but high energy spread as well

High charge and energy self-injected beam Uf TÉCNICO but high energy spread as well

Thales Silva | 1st EuPRAXIA collaboration week, Hamburg | June,

TÉCNICO LISBOA

IJİ

Beam parameters at the time of lowest energy spread.

Parameter analysis

- Lower density seems to be preferable.
- Energy spread got worse using a longer ramp.
- Important point: a fine tune of the grid is still necessary. The actual values of the beam parameters can vary by changing the cell size.
- Laser energy ~10⁻¹J (Base value 5J).
- Peak power ~10TW (Base value 167TW).

Recent results

Down ramp plasma self-injection

Simulation setup

Plasma, laser, and grid parameters

Parameter scan of the plasma density

Conclusions & future work

Parameter scan of the plasma density

Simulation results show an improvement in the beam energy and charge when working at lower densities.

Grid parameters and test of PGC smoothing

Fine tune the grid parameters for our PGC runs (study in progress). Results with PGC smoothing have to be further verified (study in progress).

Improvement of the beam parameters

An effort to obtain smaller energy spread while keeping the energy and charge as they are.

There is plenty of room to modify the laser parameters in order to do so.