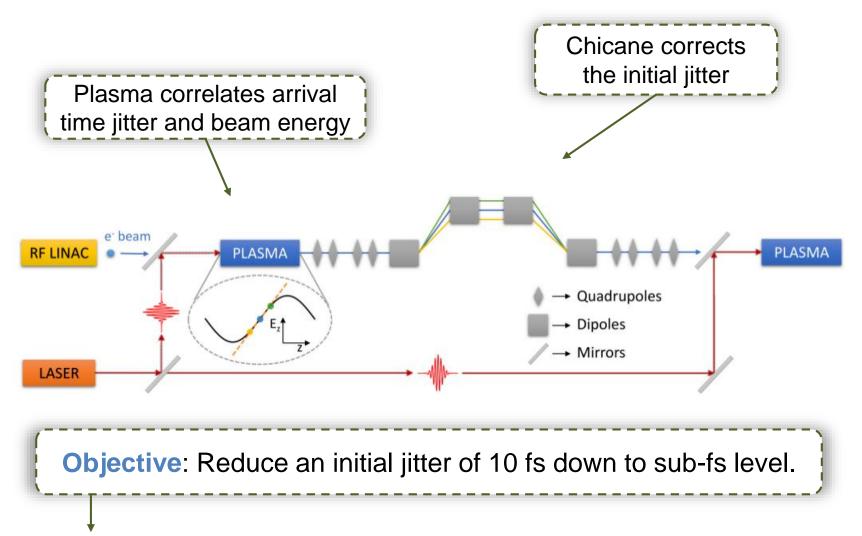

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

External Injection with Sub-Femtosecond Timing Jitter

Ángel Ferran Pousa / DESY EuPRAXIA 1st Collaboration Week - WP2 meeting

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.


Outlook

- Main idea.
- Linear model.
- Simulation setup and results.
- Some concerns.
- Conclusion.

EUPRAXIA Overview of the Scheme

A. Ferran Pousa, R. Assmann, R. Brinkmann, A. Martinez de la Ossa, *"External Injection with Sub-Femtosecond Timing Jitter"*, Proc. IPAC 17.

Linear Model

R₅₆ required at the chicane:

$$R_{56} = -\frac{E_0}{eE_z'L_p}$$

 E_0 - reference energy of the beam. E_z ' - Slope of the accelerating field. L_p - length of plasma stage.

> Assuming plasma in the linear regime:

$$R_{56} = -\sqrt{\frac{2}{\pi} \frac{E_0}{mc^2 a_0^2 k_p^3 \sigma_z L_p}} e^{\frac{k_p^2 \sigma_z^2}{2}}$$
 (Typically < 1 mm!

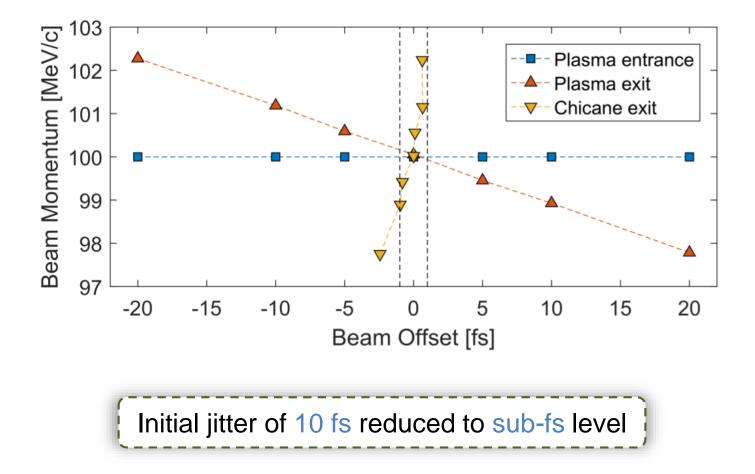
> If the laser spot size is matched to the plasma ($\sigma_z k_p = 1$):

$$R_{56}[\text{mm}] = -7.27 \times 10^{13} \frac{E_0[\text{MeV}]}{a_0^2 n_p[\text{cm}^{-3}] L_p[\text{mm}]}$$

Simulation Setup

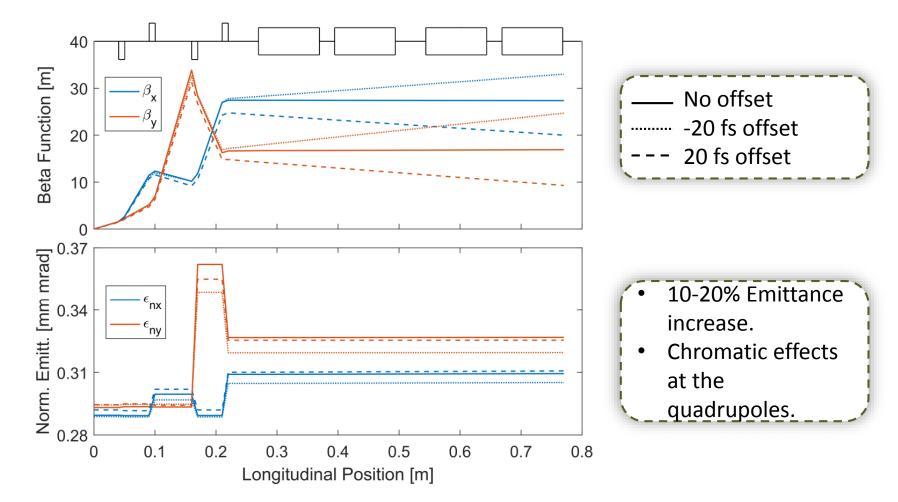
800 nm
3.5 J
0.6
35 TW
54 µm
93 fs (in intensity)
10 ¹⁷ cm ⁻³
2 mm
0.1 pC
100 MeV (0.1%)
0.3 mm mrad
1.3 µm
1 fs
1 cm
-878, 1406, -1497, 823 m ⁻²
10 cm
2.19 °

- Laser with roughly 3% of the EuPRAXIA pulse energy.
- Electron beam parameters chosen similar to ARES linac for SINBAD. Charge chosen not to have significant beam loading.
- Relatively high plasma density and laser power to allow for a shorter plasma stage (and save computational time).
- Beamline after plasma incudes
 CSR effects but no space charge.

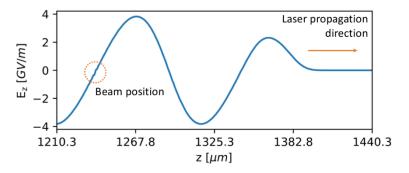

ELEGANT

Simulation Results

> Arrival time jitter correction:



Simulation Results


> Beam evolution:

- Energy kick given to the beam should be significantly higher than its initial energy spread.
- Strong beam loading should be avoided (limit on charge). If significant, it has to be taken into account to calculate the R₅₆.

• R₅₆ of the drift space should be taken into account.

- Timing jitter of 10 fs can be reduced to sub-fs level.
- Higher jitter can be corrected with lower plasma densities.
- More beam charge can be accepted by going to higher density or laser power.
- Some way of correcting chromatic effects is needed.
- Study stability and tolerances.