EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

Beam Loading ASsisted maTching (BLAST) scheme for beam driven PWFA

Stefano Romeo on behalf of SPARC_LAB collaboration (INFN – LNF) 1st EuPRAXIA collaboration week, WP9, Hamburg 19-23/06/2017

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

Stefano Romeo 1st EuPRAXIA collaboration week, Hamburg 19-23/06/2017

FEL

Horizon 2020

Simulation codes

Architect

hybrid code for PWFA

Hybrid Tool: Architect

Code reliability respect to full PIC code showed both for linear and quasilinear regimes [1] [2]

E[•]**PRA K**IA

Linear/Bubble regime

$n_b \ll n_0$

Linear field

- It is possible to inject a beam in the crest region (no focusing)
- Non linear dependency of the focusing
- Accelerating field depends on transverse position
- Lower field

$n_b \gg n_0$

Blow out field

- No crest region -> Spike
- Linear dependency of the focusing
- Accelerating field doesn't depend on transverse position
- Higher field

$$\sigma_m = \sqrt[4]{\frac{2}{\gamma}} \sqrt{\frac{\varepsilon_n}{k_p}} \longleftrightarrow \beta_m = \frac{\sqrt{2\gamma}}{k_p}$$

After a propagation inside plasma, a driving bunch will assest to the matching condition given by β_m [3]

$$\varepsilon_{n,fin} = \frac{\varepsilon_{n,init}}{2} \left(\frac{1 + \alpha_T^2}{\beta^*} + \beta^* \right)$$

Final emittance depends on injection condition and since $\varepsilon_{n,fin} > \varepsilon_{n,init}$ the assestment spot size $\sigma_{fin} > \sigma_m$ [3]

$$\alpha \gg 1 \longleftrightarrow B_n \gg \frac{2I_A}{\pi^2 \beta_m \varepsilon_n}$$

The condition over driver density becomes a condition over driver brightness

Eupra High quality acceleration in linear regime

BLAST scheme

- The longitudinal field generated by a low charge high density bunch can be described by linear equations
 [4]
- The beam loading compensation occurs when the first derivative of the accelerating field in the center of the witness is 0 [5]
- From the analytical model of field it is possible to evaluate the energy spread [6]

Beam loading compensation

$$\frac{\partial E_z}{\partial \xi} = 0 \quad \longleftrightarrow \quad \sin \phi_0 = -k_p \frac{Z(0)R(0)}{E_0}$$

For any witness in a great range of parameters it's possible to find an injection distance that guarantees beam loading compensation

$$\sigma_{E,f} = \sqrt{\sigma_{E,i}^2 + \left(1 - \frac{\gamma_0}{\gamma}\right)^2 \frac{3k_p^4 \sigma_{Z,W}^4}{4}}$$

Energy spread growth depends only on witness length

EUPRAXIA BLAST scheme transverse matching

A correlated focusing on longitudinal dimension causes emittance growth

$$\varepsilon_{n,c} = \frac{k^2 \sigma_{\chi}^2 L}{c} \sqrt{\langle f^2(\xi) \rangle}$$

$$\frac{\partial (E_r - cB_\theta)}{\partial \xi} = 0$$

Hypotesis of energy spread compensation using beam loading (NO BUNCH SHAPING)

$$\frac{\partial E_z}{\partial \xi} = 0$$

Hypotesis of quasi-linearity $J_z = 0$ [7]

Consequences
$$J_r = 0$$
 $\frac{\partial \rho}{\partial r, \xi} = 0$ $\frac{\partial (E_r - cB_\theta)}{\partial \xi} = 0$
Ion column model can be applied $n = \frac{n_0}{2}$ [8] $\sigma_m = \sqrt[4]{\frac{1}{\gamma}} \sqrt{\frac{2\varepsilon_n}{k_p}}$

EUPRAXIA Working point parameters

	SPARC_LAB V	Vorking Point	
	Driver Injection	Witness Injection	
γ	200	200	
$\sigma_r[\mu m]$	10.3	1.26	
$\sigma_{z}[\mu m]$	37.2	3	
$\sigma_E[\%]$	0.1	0.1	
$\varepsilon_n[\mu m]$	17	0.3	
Q[pC]	200	10	
<i>I</i> [kA]	0.68	0.42	
Q	1.2	0.06	→ λ ≈ 235 um
$n_0 [\text{cm}^{-3}]$	2 · 1	0 ¹⁶	$n_p \sim 200 \mu m$
E_z [GV/m]	2	2	
Δs [cm]	5	5	

$$\sin\phi_0 = -k_p \frac{Z(0)R(0)}{E_0}$$

The model developed for BLAST scheme doesn't forsee the driver head erosion effects A simulation scan is required in order to evaluate E_0 and ϕ_0

Bunch separation scan (high resolution)

Witness LPS

z-plane 49984µm

Energy spread evolution and accelerating gradient

Witness envelope

$$\epsilon_{n,fin} = \frac{\epsilon_{n,init}}{2} \left(2 + \frac{s^2}{\beta_w} \right)$$

Assuming an error in waist position of the witness equal to λ_p the emittance growth results to be of 3% [5]

Incoming witness	Outcoming witness		
$\gamma = 200$	$\gamma = 300$		
$\varepsilon_n = 0.3 mm mrad$	$\varepsilon_n = 0.308 mm mrad$		
$\sigma_E=0.1\%$	$\sigma_{\scriptscriptstyle E}=0.22\%$		

Acceleration parameters			
$\Delta s = 5cm$			
$E_z = 1.07 GV/m$			

EUPRAXIA

Stability analysis

- A scan of 30 simulation was performed using the ٠ latin hypercube sample in order to analyze the working point robustness
- The chosen parameter range of the scan is ٠ consistent with measurements performed at SPARC LAB injector (worst results)
 - $-\sigma_r \pm 15\%$
 - $\sigma_z \pm 8\%$
 - $Q \pm 10\%$
 - $\Delta z \pm 8\%$

EUPRAXIA Rescaling to EuPRAXIA parameters

	SPARC_LAB Working Point			EuPRAXIA			
	Driver Injection	Witness Injection	Witness Extraction	Driver Injection	Witness Injection	Exp. Witness Extraction	
γ	200	200	300	980	980	1960	
$\sigma_r[\mu m]$	10.3	1.26	1.3	5.8	0.67	0.67	
$\sigma_{z}[\mu m]$	37.2	3	3	16.6	1	1	
$\sigma_E[\%]$	0.1	0.1	0.22	0.1	0.1	0.2	
$\varepsilon_n[\mu m]$	17	0.3	0.31	34	0.3	0.3	
Q[pC]	200	10	10	200	30	30	
I[kA]	0.68	0.42	0.42	1.5	3.8	3.8	
Q	1.2	0.06	0.06	2.72	0.4	0.4	
$n_0 [\rm cm^{-3}]$	$2\cdot 10^{16}$			10 ¹⁷			
E_z [GV/m]	1 (2 exp.)			5.2			
Δs [cm]	5			15			

Conclusions

Results

- Low energy working point fullfilled
- Theoretical basis for working point forecasts estabilished

Future perspectives

- Model for head erosion
- Cross-check of the results with full PIC/3D codes
- Simulation scan in order to propose a possible EuPRAXIA working point is on chart

Acknowledgements:

SPARC_LAB GROUP, EuPRAXIA collaboration, WP9

List of references

[1] Massimo, F., S. Atzeni, and A. Marocchino. "Comparisons of time explicit hybrid kinetic-fluid code Architect for Plasma Wakefield Acceleration with a full PIC code." *Journal of Computational Physics* 327 (2016): 841-850.

[2] Marocchino, A., et al. "Efficient modeling of plasma wakefield acceleration in quasi-non-linear-regimes with the hybrid code Architect." *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 829 (2016): 386-391.

[3] Mehrling, T., et al. "Transverse emittance growth in staged laser-wakefield acceleration." *Physical Review Special Topics-Accelerators and Beams* 15.11 (2012): 111303.

[4] Barov, Nick, et al. "Energy loss of a high-charge bunched electron beam in plasma: Analysis." *Physical Review Special Topics-Accelerators and Beams* 7.6 (2004): 061301.

[5] Chiou, T. C., and T. Katsouleas. "High beam quality and efficiency in plasma-based accelerators." *Physical review letters* 81.16 (1998): 3411.

[6] LCLS, CDR, ch07. SLAC

[7] Lu, W., et al. "A nonlinear theory for multidimensional relativistic plasma wave wakefields a." *Physics of Plasmas* 13.5 (2006): 056709.

[8] Stupakov, G., et al. "Wake excited in plasma by an ultrarelativistic pointlike bunch." Physical Review Accelerators and Beams 19.10 (2016): 101302.

EUPRAXIA Half density ion column

