

## Comb-like configuration studies

### Anna Giribono

LNF-INFN and La Sapienza University

On behalf of SPARC\_LAB collaboration



#### Introduction

- Witness working point optimisation
- Comb beam transport and optimisation



- A "comb-like" configuration for the electron beam, consisting of a 200 pC driver followed by a 30 pC witness bunch, has been explored.
- Computational studies have been devoted to provide
  - 0.55 ps beam spaced, corresponding to  $\lambda_p/2$  (for  $n_p = 10^{16}$  cm<sup>-3</sup>), i.e. the accelerating and focusing region in the plasma bubble.
  - 3 μm (fwhm) witness length, and so 3 kA-fwhm peak current, minimising as much as possible the degradation of the transverse normalised emittance, that occurs because of the witness-driver crossing.
  - driver and witness transversally matched to the plasma (2 and 4  $\mu$ m)
- First results have been obtained by
  - using the laser-comb technique, experimentally demonstrated at SPARC\_LAB
  - appropriate shaping and relative spacing of the laser-comb pulses at the cathode surface
  - a fine tuning of phases of accelerating cavities and of magnetic fields of solenoids starting from an optimised witness working point



#### Witness working point optimisation

An injector scheme able to satisfy the high-quality, 3 kA witness request has been studied

- The successful operation of a plasma-based user facility should not introduce any degradation of the beam quality but only boost of the energy.
- The beam parameters, except for the energy, requested at the undulator are those at the plasma entrance, independently by the driving mechanism.
- The study is focused on a witness beam at plasma entrance suitable for LWFA and PWFA: 30 pC, 3 kA, 500 MeV, 1 3  $\mu m$  transverse spot size
- The Injector is composed of \*
  - S-band photoinjector to generate 3 kA beam current (<u>TSTEP</u>)
  - X-band linac to boost the beam up to 500 MeV (*Elegant*)
  - Focusing region to match the beam transversally at the plasma entrance (*Elegant,TSTEP*)



 BD and photoinjector layout optimised for the 30 pC witness beam in order to reach a peak current of ~3kA





#### WP optimisation for the photoinjector

The beam dynamics in the photoinjector has been optimised for the witness beam with particular regard to the transverse normalised emittance

| Beam parameters @Photoinj.Exit |           |  |
|--------------------------------|-----------|--|
|                                | Optimised |  |
| E [MeV]                        | 98.85     |  |
| ε <sub>x,y</sub> [mm mrad]     | 0.44      |  |
| σ <sub>z-FWHM</sub> [μm]       | ~ 3.0     |  |
| σ <sub>z-rms</sub> [μm]        | 5.6       |  |
| ΔΕ/Ε [%]                       | 0.27      |  |
| σ <sub>x-rms</sub> [μm]        | 117       |  |
| β <sub>x,y</sub> [m]           | 6.1       |  |
| $\alpha_{x,y}$                 | 2.1       |  |
| I <sub>peak [FWHM]</sub> [kA]  | 3         |  |



Anna Giribono

Eupraxia J

#### - X-band linac optimisation studies

 BD and X-band linac layout optimised for the 30 pC witness beam in order to boost the energy and preserve the beam quality.



Anna Giribono

SPARC



#### X-band linac optimisation studies

#### Phase space at plasma entrance

| Beam parameters @Plasma<br>Entrance |             |  |  |
|-------------------------------------|-------------|--|--|
|                                     | Optimised   |  |  |
| E [MeV]                             | 517.6       |  |  |
| ε <sub>x,y</sub> [mm mrad]          | 0.45 - 0.47 |  |  |
| σ <sub>z-FWHM</sub> [μm]            | ~ 3.0       |  |  |
| σ <sub>z-rms</sub> [μm]             | 6.0         |  |  |
| ΔΕ/Ε [%]                            | 0.06        |  |  |
| σ <sub>x-rms</sub> [μm]             | 1.0         |  |  |
| β <sub>x,y</sub> [mm]               | 2.0         |  |  |
| α <sub>x,y</sub>                    | ~ 0.0       |  |  |
| I <sub>peak [FWHM]</sub> [kA]       | 3           |  |  |



Anna Giribono

Eupraxia Joint



Beam parameters on the cathode Driver Witness Charge [pC] 200 30 # of 200k 30k macroparticles Uniform Uniform Transverse profile Radius [µm] 500 - 700 350 Fwitness Longitudinal Gaussian Gaussian profile . whole beam σ<sub>7</sub> [μm] 120 120 10\*∆t [ps]



• The studies started from the witness point optimisation ...





#### Transverse emittance optimisation

- The driver spot size on the cathode is crucial for the control of
  - the witness emittance growth
  - the longitudinal distribution
  - the behavior of the transverse normalised emittance and bunch length as function of the driver spot radius indicates  $\sigma_t = 350 \ \mu m$  as the optimal value for the driver spot size at the cathode surface





#### Comb-like operation





#### Phase space at photoinjector exit: the witness





#### Phase space at photoinjector exit: the driver





#### Phase space at plasma entrance: the witness





#### Phase space at plasma entrance: *the witness*

Very first results





#### Phase space at plasma entrance: the driver





| Beam parameters @Plasma Entrance |                           |                        |                       |
|----------------------------------|---------------------------|------------------------|-----------------------|
|                                  | Witness (Single<br>bunch) | Witness (Comb<br>beam) | Driver (Comb<br>beam) |
| E [MeV]                          | 517.6                     | 499                    | 500.4                 |
| ε <sub>x,y</sub> [mm mrad]       | 0.45 – 0.47               | 0.73 – 0.93            | 2.6 - 3.3             |
| σ <sub>z-FWHM</sub> [μm]         | ~ 3.0                     | ~ 3.0                  | -                     |
| σ <sub>z-rms</sub> [μm]          | 6.0                       | 6.0                    | 42.1                  |
| ΔΕ/Ε [%]                         | 0.06                      | 0.05                   | 0.07                  |
| σ <sub>x-rms</sub> [μm]          | 1.0                       | 1.1                    | 2 - 3                 |
| β <sub>x,y</sub> [mm]            | 2.0                       | 2.0                    | -                     |
| α <sub>x,y</sub>                 | ~ 0.0                     | ~ 0.0                  | -                     |
| I <sub>peak [FWHM]</sub> [kA]    | 3                         | 3                      | -                     |



- Injector scheme to provide a 3 kA witness beam at plasma injection has been optimised for a 30 pC electron beam.
- BD in the injector has been described with particular attention to the longitudinal beam quality at the plasma injection.
- The phase space quality has been optimised preserving the high beam current at the plasma entrance.



# THANK YOU!!!

Anna Giribono



- X-band cavity radius, r, ranges between 2.4 3.5 mm
- A check on the beam envelope along the X-band linac is mandatory due to the X-band cell iris radius



Eupraxia Joint Meeting – Hamburg, 22/06/2017