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• Many examples of bimetallic catalysts in industrial use

Importance of bimetallic catalysis

Hydrodechlorination catalysis (CuPd, ICI)

Trans-1,2-dichloroethene



• Many examples of bimetallic catalysts in industrial use

Importance of bimetallic catalysis

Vinyl acetate synthesis (AuPd, BP Chemicals)

ethylene acetic acid vinyl acetate



• Many examples of bimetallic catalysts in industrial use

Importance of bimetallic catalysis

carbon
monoxide

hydrogen octane water

8 + 17 + 8 

Fischer-Tropsch Catalysis (CoPd, SASOL Technology UK)



Bimetallic Catalysis – Ensemble v Ligand Effects

• The promoting effect of adding a second element is often ascribed 
to ensemble effects or ligand effects

– Key issue is often SELECTIVITY towards the production of one desirable product

• E.g. ENSEMBLE EFFECT[1]

• CO adsorption on a Pd atom surrounded by 6 Au atoms in a (111) 
surface has a binding energy of ~0.7 eV 

• CO adsorption in a hollow site surrounded by 3 Pd atoms has a 
binding energy of ~1.1 eV

• LIGAND EFFECT: may be ascribed to charge transfer from one 
element to another

[1] P. Liu, J.K. Norskov, Physical Chemistry Chemical Physics 3 (2001) 3814-3818



Influence of adsorbate on surface composition of bimetallic 
surfaces
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MEIS as a probe of adsorbate induced segregation

• Advantages

• Advantages:
– Use of shadowing and blocking to enable selective 

illumination of integer numbers of layers

– Adsorbate “invisible” in terms of shadowing 
underlying atoms 
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Problems with traditional approach – structure gap

• Nanoparticles v extended 
surfaces
– Different crystal planes exposed

– Role of edges; defects

– Differences in electronic properties

• Role of oxide support

• Better to study nanoparticles 
grown on oxide surfaces

• Extend the use of MEIS to investigate  bimetallic particles on 
oxide surfaces?



MEIS Analysis of Au/Pd Alloy Nanoparticles

Silicon wafer

Thin silica film

NiAl{110}

Thin Al2O3 film



MEIS Analysis of Au/Pd Alloy Nanoparticles

Silicon wafer

Thin silica film

NiAl{110}

Thin Al2O3 film

https://www.hud.ac.uk/research/researchcentres/acceleratorapplicationsinternationalinstitutefor/environment/meis/

https://www.hud.ac.uk/research/researchcentres/acceleratorapplicationsinternationalinstitutefor/environment/meis/


Data Preparation

Scattering Angle

Energy (keV)

Au Surface

Pd Surface

• k2 correction applied to both Au and Pd peaks

• Project data over a relatively wide angular range 

• Inverse k2 correction to create spectrum for fitting
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Spectrum simulation

Spectra of monometallic systems

• Basic line shape of MEIS spectra is known to be asymmetric

• Used asymmetric Gaussian derived by fitting data from submonolayer
Au on Ni{111}

• Incorporate isotopic abundance into each elemental peak

WH Schulte et al; Nuclear Instruments and Methods B 183 (2001) 16 



Spectrum simulation – particle shape

• Assume hexagonal, flat-topped particle
• For each atom in a particle, take into account stopping power to determine 

path-dependent energy loss (SRIM) and include influence of straggling
• Shadowing and blocking

– Used values from a psuedo-random geometry for fcc{111}
– Needs refinement for bigger particles



Fitting results – Pd60Au40 on SiO2/Si{100}

Homogeneous depth profile

20% top, 60% core, 20% base

Fitted % top/core/base

Particles – not flat surface

J. Gustafson, A.R. Haire, C.J. Baddeley, Surface Science 605 (2011) 220



Improved analysis tool – Pedro Grande, UFRGS, Brazil

• Parallel development of superior fitting methods for MEIS 
of nanostructured surfaces

• Better modelling of peak shape

• Better capability to deal with distribution of particle 
shapes and sizes

• Intention is to calibrate with Grande group for data 
analysis

e.g. P.L. Grande and co-workers; Scientific Reports 3, Article number: 3414 (2013) 
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Current MEIS project  - Background

• Furfural regarded as a non-oil based feedstock [1].

• Hydrogenation gives furfuryl alcohol [2], but also by-products.

• Supported Au can operate with a very high selectivity to furfuryl alcohol [3]

• reaction rate is very slow
– high activation barrier for dissociative adsorption of H2

– Needs very high H2 pressures 



[1] A. Javaid et al. Chem. Eng. & Technol. 2014, 37, 1515;
[2] M. Li et al. Top. Catal. 2015, 58, 149.

Background

• Atomic hydrogen may be generated in situ via a parallel dehydrogenation reaction [1].

• Au is inactive toward dehydrogenation, therefore another catalyst is needed.

• Hydrogen-free hydrogenation of nitrobenzene coupled with 2-butanol dehydrogenation 
over supported Cu has been successfully demonstrated [2].

• Possibility of using supported Cu/Au as catalysts for a coupled dehydrogenation 
/hydrogenation reaction.

Oxide

Cu Au

Oxide

100% selectivity to furfural

Full utilisation of hydrogen

Operates at 1 bar pressure

Order of magnitude increase 
in reaction rate vs high 
pressure H2 over Au catalyst



Target catalyst

• Aim to gain a mechanistic understanding of coupled
dehydrogenation/hydrogenation over supported Cu/Au catalytic systems.

– In situ DRIFTS/MS on real systems

– STM, TPD, vibrational spectroscopy on UHV model systems

• Optimise support

– initial catalytic measurements have identified cerium oxide as best support

• Decrease Cu – Au particle separation to enhance transfer of atomic hydrogen



Si(111)

Cu Au

SiO2

CeO2

Future MEIS experiments

• Deposit thin (~5 nm) cerium
oxide films on silicon wafer

• Deposit Cu and Au from solution

• Use AFM and XPS to optimise
sample preparation

• Use MEIS to characterise thermal
behaviour focussing on alloying
and adsorbate induced
segregation

• For analysis, collaborate with
group of Professor Pedro Grande
(Federal University of Rio Grande
do Sul, Brazil)
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Surface composition of bimetallic particles on oxide supports

• Detailed composition of surface of particles 
on planar oxide supports from LEIS

K. Luo, T. Wei, C.W. Yi, S. Axnanda, D.W. Goodman, Journal of 
Physical Chemistry B 109 (2005) 23517
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• Segregation phenomena well described 
by DFT etc


